Pedro Cermeño

Postdoctoral Associate

Instituto de Ciencias del Mar

Consejo Superior de Investigaciones Científicas

Passeig Maritim de la Barceloneta, 37-49

E-08003, Barcelona, Spain

Phone: +34 93 230 9500

E-mail: pedrocermeno@icm.csic.es

 

Education & employment

Research interests

Publications

 

image001.jpg

Education & employment

·         BSc in Biology, University of Salamanca (Spain), 1998

·         BSc in Marine Sciences, University of Vigo (Spain), 2001

·         PhD in Biological Oceanography, University of Vigo, 2006

·         MEC-Fulbright Postdoctoral Fellow, Rutgers University (USA), 2006-2007

·         Marie Curie Postdoctoral Fellow, Rutgers University (USA), 2007-2010

·         Juan de la Cierva Postdoctoral Fellow, University of Vigo (Spain), 2010-2012

·         Ramon y Cajal, Instituto de Ciencias del Mar, CSIC, 2012-present

 

 

Research interests

Evolution & Ecology of Marine Microbial Plankton.

Marine microbes are central to ocean ecology and global biogeochemistry. For instance, oxygenic photosynthesis, which is dominated by microalgae in the oceans, converts gaseous CO2 into organic compounds, whereas respiration, largely dominated by heterotrophic bacteria, accomplishes the reverse. The fraction of organic carbon that escapes bacterial re-mineralization contributes to reduce Earth’s lithosphere, a process that, over geological time scales, has raised the amount of free-oxygen in the atmosphere to levels that enable present-day life. Calcification by marine microbial calcifiers such as coccolithophores and foraminifera converts dissolved inorganic molecules to solid-phase calcite and aragonite, a process that contributes to modulate atmospheric CO2 levels, ocean alkalinity and therefore Earth’s climate. Moreover, marine microbes sustain global fisheries as the base of marine food webs, contribute to keep marine ecosystems in good health and provide an array of natural products widely used in pharmaceutics and other industries with enormous socio-economic impact. Life on Earth is microbe dependent, yet little is known about the mechanisms that control the assembly of microbial communities and their diversity.

 

 

 

  In our recently finished project TASIO, we have explored the global distribution of two key phytoplankton functional groups diatoms and coccolithophores. In Tasio we studied how phytoplankton such as diatoms and coccolithophores play a part in the regulation of atmospheric carbon dioxide, which has significance to important climate change studies.

 

 

 

• PROJECT TITLE: Taxonomic composition and cell size of marine eukaryotic phytoplankton

Imagentasio.png

European Union through Marie Curie program

Diatoms, coccolithophores and ocean carbon biogeochemistry

Carbon uptake by phytoplankton, and its export as organic matter to the ocean interior (a mechanism known as the ‘biological pump’) lowers the partial pressure of CO2 in the upper ocean and facilitates the diffusive drawdown of atmospheric CO2. However, precipitation of calcium carbonate by marine calcifiers such as coccolithophorids increases the partial pressure of CO2 and promotes outgassing from the ocean to the atmosphere (known as the ‘alkalinity pump’). Over the past 100 million years, these two carbon fluxes have been modulated by the abundance of diatoms and coccolithophorids, resulting in biological feedback on atmospheric CO2 and Earth’s climate.  (PNAS 2008).

• PROJECT TITLE: Response of marine phytoplankton to past climate change

 

Funded by Xunta de Galicia (INCITE)

 

Background: ubiquitous dispersal to survive climate change

Dispersal is a life-history trait that has profound consequences for individuals, populations and communities, and its importance has been well recognized for centuries. Viewed from an evolutionary perspective, dispersal determines the level of gene flow (as opposed to genetic isolation) between individuals and populations, and affects processes such as local adaptation, speciation, extinction, and the evolution of life-history traits. We have shown recently that marine diatom species possess global dispersal ranges. Our observations revealed that diatom communities from North Atlantic resembled much more to those of the North Pacific than to those in the Southern Ocean despite being separated by continental masses (Science 2009).

 

Ubiquitous dispersal facilitates environmental tracking and habitat recolonization. During the Pleistocene there were massive changes in climate that altered the distribution and areal extent of oceanic biomes. Analyses of fossil records showed that the taxonomic composition of marine diatom communities may change and recover in concert with the glacial/interglacial climates of the Pleistocene, demonstrating that disruption of local conditions leads microbial species to disperse into favourable habitats elsewhere. This mechanism allowed these marine microbes to survive across dramatic climate events in the geological past. See PLoSone 2010

 

• PROJECT TITLE: Phytoplankton abundance and cell size in the ocean

 

Phytoplankton abundance and cell size

Large sized species with a higher surface to volume ratio are at a disadvantage with respect to smaller cells for nutrient uptake in nutrient-poor ecosystems. Contrary to expectations, the relationship between population density and cell size exhibited a power function with an exponent near -0.75 regardless of the nutritional status of the system. These results are consistent with a Darwinian evolutionary model, in which larger species evolve adaptive strategies to cope with their biophysical limits to nutrient acquisition. (Eco Letts 2006)

 

                                                                                                                                                                                                                                                                     return

 

 

Publications

 

1.      Rodríguez-Ramos, T., Dornelas, M., Marañón, E., Cermeño, P. (2013) Conventional sampling methods severely understimate phytoplankton species richness. Journal of Plankton Research doi: 10.1093/plankt/fbt115

 

2.      Cermeño, P, Rodríguez-Ramos, T., Dornelas, M. Figueiras, F.G., Marañón E., Teixeira, I.G., Vallina, S. (2013) Species richness in marine phytoplankton communities is not correlated to ecosystem productivity. Marine Ecology Progress Series 488:1-9 (Feature Article)

 

3.      Cermeño, P., Castro-Bugallo, A., Vallina, S. Diversification patterns of planktic foraminífera in the fossil record. Marine Micropaleontology 104:38-43

 

4.      Marañón, E., Cermeño, P., López-Sandoval, D., Rodríguez-Ramos, T., Sobrino, C., Huete-Ortega, M., Blanco, J., Rodríguez, J. Unimodal size-scaling of phytoplankton growth and the size-dependence of nutrient uptake and use. Ecology Letters, doi: 10.1111/ele.12052. Highlighted Faculty of 1000

 

5.      López-Sandoval, D., Rodríguez-Ramos, T., Cermeño, P., Maranón, E. Cell size and taxon dependence of organic carbon exudation in marine phytoplankton. Marine Ecology Progress Series, in press

 

6.      Martínez-García S. et al. (including Cermeño, P.) Differential response of microbial plankton communities to nutrient inputs in contrasting marine environments: North Atlantic Subtropical Gyre and Ría de Vigo. Marine Biology, in press

 

7.      Cermeño, P., Marañón, E., Romero, O. (2012) Response of marine diatom communities to Late Quaternary abrupt climate changes. Journal of Plankton Research, doi: 10.1093/plankt/fbs073. Featured article

 

8.      Marañón, E., Cermeño, P., Latasa, M., Tadonléké, R. M. (2012) Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography, 57, 1266-1278.

 

9.      Huete-Ortega, M., Cermeño P, Calvo, A., Marañón E. Isometric size scaling of metabolic rate and the size abundance distribution of phytoplankton. Proceedings of the Royal Society B doi: 10.1098/rspb.2011.2257

 

10.  Cermeño P. (2011) Marine planktonic microbes survived climatic instabilities in the past. Proceedings of the Royal Society B doi: 10.1098/rspb.2011.1151

 

11.  Cermeño P, Lee J-B, Wyman K, Schofield O. and Falkowski PG. (2011) Competitive dynamics in two species of phytoplankton under non-equilibrium conditions. Marine Ecology Progress Series 429: 19–28.

 

12.  Huete-Ortega M., Cermeño P. and E. Marañón. Determinación de la relación entre producción primaria y tamaño celular en comunidades naturales de fitoplancton. En "Métodos y técnicas en investigación marina". Eds: C. Olabarría, E. Rolán, J. M. García-Estévez, S. Pérez y G. Rosón. Editorial Technos.

 

13.  Cermeño P. Dispersión sin límites. Investigación y Ciencia. November 2010

 

14.  Marañón E. et al. (including Cermeño P) (2010) The degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnology and Oceanography 55(6), 2339-2352. Highlighted Faculty of 1000

 

15.  Cermeño P, de Vargas, C. Abrantes, F. Falkowski PG. Phytoplankton Biogeography and community stability in the ocean. (2010) PLoSone 5, e10037.  Highlighted Faculty of 1000.

 

16.  Cermeño P, Falkowski PG. Controls on diatom biogeography in the ocean. (2009) Science 325, 1539-1541. (Perspective by David Patterson)

 

17.  Cermeño P, Dutkiewicz S, Harris RP, Follows M, Schofield O, Falkowski PG. (2008). The role of nutricline depth in regulating the ocean carbon cycle. Proceedings of the National Academy of Sciences of USA 105, (51) 20344-20349. Highlighted Faculty1000.

 

18.  Cermeño P, Figueiras FG. (2008) Species richness and cell-size distribution: the size structure of phytoplankton communities. Marine Ecology Progress Series 357, 79-85.

 

19.  Cermeño P, Marañón E, Harbour DS, Figueiras FG, Crespo BG, Huete M, Varela M., Harris RP. (2008) Resource levels, allometric scaling of phytoplankton abundance and marine phytoplankton diversity. Limnology and Oceanography 53, 312-318.

 

20.    Marañon, E., Cermeño P, Rodriguez, J, Zubkov M, Harris, R. (2007) Scaling phytoplankton photosynthesis in the ocean. Limnology and Oceanography 52: 2190-2198.

 

21.    Estévez-Blanco P, Cermeño P, Espiñeira M, Fernández E. (2006) Phytoplankton photosynthetic efficiency and primary production rates estimated from Fast Repetition Rate (FRR) fluorometry at coastal embayments affected by upwelling (Rías Baixas; NW of Spain). Journal of Plankton Research 28(12):1153-1165.

 

22.    Cermeño P, Marañón E, Harbour D, Harris R. (2006) Invariant scaling of phytoplankton abundance and cell size in contrasting marine environments. Ecology Letters 9(11): 1210-1215.

 

23.    Cermeño P, Marañón E, Pérez V, Serret P, Fernández E, Castro CG. (2006) Phytoplankton size structure, primary production and net community metabolism in a coastal ecosystem (Ría de Vigo, NW-Spain): seasonal and short-time scale variability. Estuarine, Coastal and Shelf Science 67(2): 251-266.

 

24.    Cermeño P, Estévez-Blanco P, Marañón E, Fernández E. (2005) Maximum photosynthetic efficiency of size-fractionated phytoplankton assessed by 14C-uptake and fast repetition rate fluorometry. Limnology and Oceanography, 50:1438-1446.

 

25.    Marañón E, Cermeño P, Pérez V. (2005) Photosynthetic production of dissolved organic carbon during summer oligotrophic conditions in the Celtic Sea. Marine Ecology Progress Series, 299:7-17.

 

26.    Cermeño P, Marañón E, Rodríguez J, Fernández E. (2005) Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Marine Ecology Progress Series, 297:51-60. Highlighted Faculty1000

 

27.    Cermeño P, Marañón E, Rodríguez J, Fernández E. (2005) Size dependence of coastal phytoplankton photosynthesis under vertical mixing conditions. Journal of Plankton Research, 27(5): 473-483.

 

28.    Marañón E, Cermeño P, Fernández E, Rodríguez J, Zabala L. (2004) Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnology and Oceanography 49(5): 1652-1666.

 

29.    Cermeño P, Nombela MA, Costas S. (2003) Qualitative analysis of pigments in recent sediments of the middle-inner Ría de Arosa (NW Spain): diagenetic and environmental assessments. Thalassas 19(1): 27-37.

 

In preparation/in review

 

 

Cermeno, P. et al. The evolution of phytoplankton cell size and its role in the sequestration of atmospheric carbon dioxide. In preparation

 

Cermeño P. et al. Nutrient controls of export production in the glacial Atlantic ocean.

 

 

Conference abstracts

1.      Marañón E, Cermeño P, Fernández E, Zabala L, Rodríguez J. Microbial production of dissolved organic carbon in a coastal embayment (Ría de Vigo, NW Spain): is there a relationship with plankton size structure? IGS/AGU Nize 2002.

2.      Cermeño P, Marañón E, Fernández E, Pérez V, Serret P. Size fractionated phytoplankton primary production in the Ría de Vigo: seasonal and short term variability. Iberian Atlantic Continental Margin, Vigo 2003.

3.      Marañón E, Cermeño P, Fernández E, Zabala L, Rodríguez J. Significance of dissolved organic carbon production by microbial plankton in the Ría de Vigo. Iberian Atlantic Continental Margin, Vigo 2003.

4.      Pérez V, Cermeño P, Marañón E, Fernández E, Serret P. Seasonal dynamics of microplankton oxygen metabolism in the Ría de Vigo. Iberian Atlantic Continental Margin, Vigo 2003.

5.      Cermeño P, Nombela MA.. Pigments in recent sediments of the Ría de Arosa. Iberian Atlantic Continental Margin, Vigo 2003.

6.      Cermeño P, Marañón E, Rodríguez J, Fernández E. Positive Allometry in Phytoplankton Biomass-specific Photosynthesis in a Coastal Ecosystem. ASLO summer meeting, Savannah June 2004.

7.      Marañón E, Cermeño P, Fernández E, Rodríguez J, Zabala L. Significance of dissolved organic carbon production by microbial communities in a coastal eutrophic ecosystem. ASLO summer meeting, Savannah June 2004.

8.      Cermeño P, Estévez-Blanco P, Marañón E, Fernández E. Large sized phytoplankton have higher photosynthetic efficiency than smaller cells under favourable growth conditions. Challenger Conference, Liverpool’04.

9.      Cermeño P, Marañón E, Rodríguez J, Fernández E, Zabala L, Jiménez F. Size scaling deviation in phytoplankton photosynthesis and the energy flow through a coastal ecosystem. ICES meeting, Vigo’04.

10.  Estévez-Blanco P, Fernández E, Cermeño P, Espiñeira M, Lorenzo J. Significant relationship between C-14 based and FRRF derived primary production estimates in coastal waters off NW-Spain. ASLO meeting, Salt Lake City ’05.

11.  Marañón E, Cermeño P, Pérez V. Continuity in the production of dissolved organic carbon. European Geophysical Union, Vienna 2005.

12.  Pérez V, Cermeño P, Serret P, Fernández E, Marañón E. Seasonal variability of microbial oxygen metabolism in a coastal ecosystem (Ría de Vigo, NW-Spain). Workshop on respiration, Vigo’05.

13.  Cermeño P, Marañón E, Harbour D, Harris R Invariant size scaling of phytoplankton abundance in contrasting marine environments. ASLO summer meeting Santiago de Compostela 2005.

14.  Gonzalez J, Fernández E, Perez V, Cermeño P, Marañón E. Spatial variability of the size-fractionated production/chl a ratio in the ocean. ASLO summer meeting Santiago de Compostela 2005.

15.  Marañón E, Cermeño P, Rodríguez J. Size scaling of phytoplankton photosynthesis in eutrophic and oligotrophic marine ecosystems. IMBER symposium, Valencia 2007.

16.  Cermeño P, Schofield O, Harbour DS, Harris RP, Falkowski PG. Phytoplankton community composition and nutricline depth in the ocean. Ocean Carbon Biogeochemistry, Woods Hole, USA, 2007

17.  Cermeño P. The balance between diatoms and coccolithophorids in the ocean. Invited talk, Massachusetts Institute of Technology, USA, 2008

18.  Cermeño P, Dutkiewicz, S, Harris RP, Follows M, Schofield O, Falkowski PG. The role of nutricline depth in regulating the ocean carbon cycle. ASLO/AGU/TOS Orlando, USA, 2008

19.  Huete-Ortega M, Cermeño P, Calvo A, Reul A, Blanco JM, Maranon E. Size-sacaling of phytoplankton abundance and cell-specific photosynthesis in the oligotrophic ocean. American Society Limnology Oceanography, Nize, France, 2009.

20.  Maranon E. Fernandez A, Huete-Ortega M, Cermeño P, et al. Effects of experimental dust addition on the biomass and metabolism of microbial plankton in the oligotrophic Atlantic Ocean. American Society Limnology Oceanography, Nize, France, 2009.

21.  Cermeño P, Dutkiewicz, S, Harris RP, Follows M, Schofield O, Falkowski PG. Upper ocean turbulence and the balance between diatoms and coccolithophorids in the Atlantic Ocean . American Society Limnology Oceanography, Nize, France, 2009.

22.  Cermeño P. Competitive dynamics of phytoplankton: from calm to turbulent waters. Eur-OCEANS conference Influence of meso- and submesoscale ocean dynamics on the global carbon cycle and marine ecosytems. ( 31th May to 2 June 2010 in Centre de la Mer, Aber Wrac’h, Brittany, France ) (Invited lecture).

23.  Huete-Ortega, M. Clavo-Diaz, A., Cermeño, P. Marañón, E. Size-fractionated biomass, primary production and turnover rates in the subtropical ocean. Challenger Conference 2010, Southampton.

24.  Cermeño P. Extinction of planktonic microbes in the sea: does climatic instability increase the risk of microbial extinction? ASLO 2011 Puerto Rico

25.  Vallina, S., Cermeño, P., Dutkiewicz, S, Follows, M. Kill-the-winner predation and the survival of rare phytoplankton species. Ocean Science Meeting (TOS/AGU/ASLO) Salt Lake City 2012.

26.  Cermeño, P. Finkel, Z., Vallina, S. Climatic triggers for the evolutionary success of marine diatoms. Ocean Science Meeting (TOS/AGU/ASLO) Salt Lake City 2012.

 

 

 

Composed by Pedro Cermeno

Last updated January 2013