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Earthworms belonging to the family Lumbricidae are extremely abundant in terrestrial temperate
regions. They affect soil properties and nutrient cycling, thus shaping plant community composition
and aboveground food webs. Some lumbricids are also model organisms in ecology and toxicology.
Despite the intense research efforts dedicated to lumbricids over the last 130 years, the evolutionary rela-
tionships and taxonomic classification of these organisms are still subject to great debate. Resolution of
their systematics is hampered by the structural simplicity of the earthworm body plan and the existence
of cryptic species. We sampled 160 earthworm specimens belonging to 84 lumbricid species (28 genera)
and 22 Lumbricoidea outgroups, sequenced two nuclear genes, four mitochondrial genes and seven mito-
chondrial tRNAs and examined 22 morphological characters. We then applied a combination of phyloge-
netic methods to generate the first robust genus-level phylogeny of the Lumbricidae. Our results show
that the current Lumbricidae classification and the underlying hypotheses of character evolution must
be revised. Our chronogram suggests that lumbricids emerged in the Lower Cretaceous in the holarctic
region and that their diversification has been driven by tectonic processes (e.g. Laurasia split) and geo-
graphical isolation. Our chronogram and character reconstruction analysis reveal that spermathecae
number does not follow a gradual pattern of reduction and that parthenogenesis arose from sexual rel-
atives multiple times in the group; the same analysis also indicates that both epigeic and anecic earth-
worms evolved from endogeic ancestors. These findings emphasize the strong and multiple changes to
which morphological and ecological characters are subjected, challenging the hypothesis of character sta-
sis in Lumbricidae.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Earthworms represent the main animal biomass in most terres-
trial temperate ecosystems (Lavelle and Spain, 2001). Where abun-
dant, earthworms significantly impact soil physical, chemical and
biological properties, hence modifying soil structure and accelerat-
ing organic matter decomposition and nutrient turnover, and ulti-
mately shaping plant community composition and aboveground
food webs (Lee, 1985; Edwards and Bohlen, 1996; Lavelle et al.,
2001).
Earthworms belonging to the family Lumbricidae (Rafinesque-
Schmaltz, 1815) are the most abundant invertebrates in soils of
temperate regions, where they account for 90% of the invertebrate
biomass (Edwards, 2004). Lumbricids are also important in animal
food webs and serve as prey for a wide range of invertebrate and
vertebrate predators. Several species are also model organisms in
ecology, toxicology, physiology and reproductive biology (Lavelle
and Spain, 2001; Domínguez and Velando, 2013). Bioresources
resulting from cultivation of lumbricids (vermiculture and vermi-
composting) are also of great economic value and provide impor-
tant environmental benefits, especially in light of global concerns
regarding sustainable land use, food security and climate change
(Domínguez et al., 2010).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ympev.2014.10.024&domain=pdf
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Despite the biological and economic importance of lumbricids
and the great amount of research on these species over the last
130 years, very little is known about their evolutionary relation-
ships (Pop et al., 2003). The Lumbricidae encompasses around
300 known species and is considered a monophyletic group
included in the monophyletic Crassiclitellata (comprising all earth-
worms except Moniligastridae) (Jamieson, 1988, 2006; James and
Davidson, 2012), which are united by the presence of a multilay-
ered clitellum. However, there is no consensus on the classification
of Lumbricidae, with proposals ranging from 6–14 genera in histor-
ical studies (Bouché, 1972; Omodeo, 1956; Pop, 1941) to 31–45
genera in modern revisions (Blakemore, 2008; Csuzdi and Zicsi,
2003; Mrsic, 1991; Qiu and Bouché, 1998a). More importantly,
all of the proposed classifications are somewhat ‘‘intuitive’’ rather
than based on explicit phylogenetic analyses.

Lumbricidae taxonomy has always been hindered by the struc-
tural simplicity of the earthworm body plan that lacks complex
appendages or highly specialized copulatory apparatuses (Pop
et al., 2003; Pérez-Losada et al., 2009). Approximately 100 morpho-
logical characters have been routinely used for species identifica-
tion, but they have never been included in a phylogenetic
framework to infer lumbricid evolutionary relationships. Variation
in the few morphological features used to identify lumbricids (e.g.
prostomium, arrangement of the setae, position and form of the cli-
tellum, tubercula pubertatis, and spermathecae) usually overlaps
across both closely and distantly related taxa (Pérez-Losada et al.,
2009; Pérez-Losada et al., 2011; Briones et al., 2009; Pop et al.,
2003). This has led to the proposition of multiple morphotypes
for the same species, as well as to the creation of invalid species
complexes (Bouché, 1972; Sims, 1983; Gates, 1972) and ‘‘catch-
all’’ genera (Briones et al., 2009; Pop et al., 2005). Although earth-
worm morphological systematics seems unreliable, no morpholog-
ical matrix has been developed for the Lumbricidae and tested in a
phylogenetic framework. Hence, the usefulness of earthworm mor-
phology for inferring Lumbricidae evolutionary relationships and
validating Lumbricidae taxonomy remains undetermined.

Over the last ten years several molecular phylogenies including
some Lumbricidae taxa have been published (Pérez-Losada et al.,
2005; Pérez-Losada et al., 2009; Pérez-Losada et al., 2011; Novo
et al., 2011; Fernández et al., 2012) and some systematic issues
(e.g., systematics of Eisenia fetida and Eisenia andrei, systematics
of the Aporrectodea caliginosa species complex and Postandrilus
radiation) have been solved. However, so far no comprehensive,
robust phylogeny of the Lumbricidae has been produced and the
few attempts published have been limited by their restricted tax-
onomic sampling and/or the low phylogenetic signal of the chosen
genes (Pop et al., 2003; Briones et al., 2009; Pérez-Losada et al.,
2012). The aforementioned studies have unanimously revealed
systematic instability within the family (e.g. many genera do not
form monophyletic assemblages) and have emphasized the urgent
need for a classification reflecting evolutionary relationships.

The family Lumbricidae has a Holarctic distribution, naturally
occurring in eastern and central USA, temperate Europe, and wes-
tern and central Asia (Gates, 1972; Mrsic, 1991). Like other Crassi-
clitellata families, lumbricids are believed to be an old lineage
(Buckley et al., 2011; James and Davidson, 2012) which distribu-
tion has been at least partly determined by paleogeography (e.g.
Lee, 1994; Omodeo, 2000; James, 2004); although the patterns of
diversification and times of divergence of the main Lumbricidae
clades remain unknown. This raises general questions as to
whether Lumbricidae lineages are correlated with their current
geographic distributions and whether current natural distributions
are good indicators of vicariant events and/or of past land area
relationships (e.g. colonization of North America). An integrative
approach combining molecular phylogenies and external informa-
tion in the form of calibrations (e.g. fossils) and species distribution
may help to address these questions. Unfortunately, the earth-
worm fossil record is very poor and other sources of evidence must
be used as calibrations trees for time divergence estimation.

Although most lumbricids are hermaphrodites, some are par-
thenogenic and lack functional testes. This is often correlated with
the presence or absence of spermathecae – a female reproductive
organ in the hermaphroditic earthworms that stores the spermato-
zoa from the partner during copulation for later fertilization of the
eggs (Velando et al., 2008; Domínguez and Velando, 2013). It has
been hypothesized that following the evolution of parthenogene-
sis, the spermathecae and male reproductive organs tend to
decrease in size and number (Gates, 1972). Hence, a robust lumb-
ricid phylogeny is essential for understanding the evolution of
spermathecal loss and reproductive strategies (hermaphroditism
or parthenogenesis) in the Lumbricidae.

Ecologically, lumbricids are classified on the basis of their feed-
ing and burrowing habits into three general ecotypes (Bouché,
1977; Lee, 1985): (i) epigeic earthworms, which live above mineral
soil, rarely form burrows and feed preferentially on plant litter; (ii)
endogeic earthworms, which forage below the surface soil, ingest
large quantities of mineral soils and humified material, and build
ramified, predominantly horizontal, burrows; and (iii) anecic
earthworms, which build permanent vertical burrows deep into
the mineral soil layer and come to surface to feed on decomposed
plant litter, manure or other organic residues. A robust phylogeny
is instrumental for testing whether feeding and burrowing habits
have driven Lumbricidae evolution or whether adaptation to these
three ecotypes has evolved multiple times.

The main aim of the present study was to develop a robust
genus-level phylogeny of the family Lumbricidae using multiple
gene regions and morphological characters. Then we will use that
phylogeny to validate Lumbricidae taxonomy, time its radiation,
and study both its geographical distribution and the evolution of
its reproductive and ecological strategies.
2. Material and methods

2.1. Earthworm sampling

Sampling of the family Lumbricidae included 160 specimens,
representing 84 species and 28 genera (Table S1 in supplementary
material). Earthworms were collected in Spain, Andorra, France,
Italy, Germany, United Kingdom, Finland, Denmark, Poland, Roma-
nia, Hungary, Serbia, Israel, Austria, Turkey, South Africa, USA, Bra-
zil, China and Vietnam. Nearly all currently recognized genera are
represented in the study, with the exception of five monospecific
genera and four small genera (<10 species), with very restricted
distributions. To root the Lumbricidae tree we used representatives
of five other Crassiclitellata families including: Criodrilidae (1 spe-
cies), Hormogastridae (2 species), Glossoscolecidae (7 species),
Megascolecidae (5 species) and Microchaetidae (7 species).

All earthworm specimens were identified following descriptions
in Bouché (1972), Mrsic (1991), Qiu and Bouché (1998a, 1998b,
1998c), Sims and Gerard (1999), Csuzdi and Zicsi (2003) and
Blakemore (2006). Specimens or tissues collected for DNA extrac-
tion were preserved in absolute ethanol and stored at �20 �C.
2.2. DNA isolation and sequencing

Total genomic DNA was extracted using the DNAeasy Tissue kit
(Qiagen). Recent phylogenetic analyses (Pérez-Losada et al., 2009,
2011; Novo et al., 2011) have demonstrated the importance of
using multiple genes for inferring earthworm evolutionary rela-
tionships. Hence, regions of the nuclear 28S rDNA and 18S rDNA
and mitochondrial 16S rDNA, 12S rDNA, NADH dehydrogenase
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(ND1), cytochrome oxidase subunit II (COII) and tRNA Asn, Asp,
Val, Leu, Ala, Ser, and Leu genes were amplified using the polymer-
ase chain reaction (PCR), as described in Pérez-Losada et al. (2009).
PCR products were purified using a MultiScreen PCRl96 (Milli-
pore) kit and sequenced bidirectionally using an Applied Biosys-
tems (ABI) 377XL automated sequencer. The ABI Big-dye Ready-
Reaction kit was used following the standard cycle sequencing pro-
tocol, but with a 16th of the suggested reaction size. DNA sequences
were deposited in GenBank under the Accession Numbers
KJ911919–KJ912618.

2.3. Morphological data

A total of 22 morphological characters, all commonly used in
earthworm alpha-taxonomy, were scored for 82 lumbricids and
20 representatives of the other Crasiclitellata families (Table S2
in supplementary material) using available species descriptions
in Bouché (1972), Mrsic (1991), Qiu and Bouché (1998a, 1998b,
1998c), Sims and Gerard (1999), Csuzdi and Zicsi (2003) and
Blakemore (2006). Only one specimen per species was chosen to
represent the species diversity. We considered the following exter-
nal characters (Table S2 in supplementary material): number of
body segments, body pigmentation, type of prostomium (a lobe
overhanging the mouth), arrangement of the setae, presence of
dorsal pores (small openings situated in the intersegmental
grooves on the mid-dorsal line) and position of the first dorsal
pore, arrangement of the nephridiopores, location of the male
pores and presence of associated tumescences; type, start and
end, and number of segments of the clitellum (glandular swelling
involved in cocoon formation), and presence and length of the
tubercula pubertatis (skin fold associated with sperm transfer to
partners). We considered the following internal characters
(Table S2 in supplementary material): number of seminal vesicles
(sperm maturation and storage sacs), number of spermathecae
(allosperm storage sacs), presence of prostate glands (add secre-
tions to the seminal fluid), presence, location and extension of
the gizzard and presence of extramural calciferous glands. Twelve
characters were binary and ten were unordered multistate with up
to eight states (Table S2 in supplementary material). The symbol ‘?’
was assigned in all cases where the character state was unknown.

2.4. Phylogenetic analysis

Nucleotide sequences from tRNAs were combined and all
sequences from each gene region were aligned in MAFFT v6
(Katoh et al., 2005; Katoh, 2008) under the global (G-INS-i) algo-
rithm and default settings. Alignment quality was assessed in
GBlocks v0.91b (Castresana, 2000). Full and conserved (after
GBlocks analysis) alignments generated similar maximum likeli-
hood trees for all genes, hence full alignments were used in all sub-
sequent phylogenetic analyses. Phylogenetic congruence among
mitochondrial (COII: 689 bp, 12S: 351 bp, 16S: 1409 bp, ND1:
930 bp, tRNAs: 713 bp; bp of aligned DNA) genes and the two
nuclear genes 18S (809 aligned bp) and 28S (965 aligned bp) was
assessed using Wiens’ (1998) protocol. No areas of strongly sup-
ported incongruence were observed among gene trees. Three differ-
ent datasets were assembled and analyzed: (i) DNA dataset
including all seven gene regions (seven data partitions), (ii)
DNA + morphological dataset (eight data partitions), and (iii) mor-
phological dataset (one data partition). JModelTest v1.0.1 (Posada,
2009) was used to select the appropriate model of evolution for each
DNA partition under the Akaike Information Criterion AIC (Posada
and Buckley, 2004). The general time reversible model of evolution
(Tavaré, 1986), with proportion of invariable sites and gamma dis-
tribution, was selected for each partition (GTR + G + I). Morpholog-
ical data were analyzed using a simple model analogous to the JC
model (Jukes and Cantor, 1969) (equal substitution rates), except
that it has a variable number of states (two to eight in our case).

Both maximum likelihood (ML) and Bayesian methods of phylo-
genetic inference were applied to the three datasets. ML analysis
was performed in GARLI under default settings for the genetic algo-
rithm, except that searchreps = 10. Clade support was assessed
using the non-parametric bootstrap procedure (Felsenstein,
1985) with 1000 bootstrap replicates. Bayesian analysis coupled
with Markov chain Monte Carlo (BMCMC) inference was per-
formed in MrBayes v3.1.2 (Ronquist and Huelsenbeck, 2003). Four
independent BMCMC analyses were run in the CIPRES Science
Gateway portal (Miller et al., 2010), each consisting of four chains.
Each Markov chain was started from a random tree and run for
2 � 107 cycles, with sampling every 1000th generation. Sequence
evolution model parameters were estimated independently for
each data partition starting as unknown variables with uniform
default priors. Convergence and mixing were monitored using Tra-
cer v1.5 (Rambaut and Drummond, 2009). All sample points prior
to reaching stationary levels were discarded as burn-in. The pos-
terior probabilities for individual clades obtained from separate
analyses were compared for congruence and then combined and
summarized on a 50% majority-rule consensus tree.

Confidence in our best hypotheses of phylogenetic relationships
was tested by first creating alternative hypotheses (e.g. Dendrobaena
octaedra is monophyletic) in MacClade, as indicated by Pérez-Losada
et al. (2004), and then comparing them under both likelihood and
Bayesian frameworks. Likelihood topological tests were conducted
using the Shimodaira and Hasegawa (1999) test as implemented
in RAxML v7.2.0 (Stamatakis et al., 2008). Bayesian topological tests
were performed as described in Huelsenbeck et al. (2002).

2.5. Divergence time estimation

Divergence times were estimated in BEAST under a relaxed log-
normal clock (Drummond et al., 2006) for each gene partition and
a Yule speciation prior. Since earthworm fossil record is unknown,
other sources of evidence must be used as calibrations to estimate
chronograms. To calibrate the Lumbricidae molecular tree, we used
two calibrations. Thus, for example, some lumbricids of the genus
Postandrilus are restricted to the island of Majorca in the western
Mediterranean, of known geological history (Rosenbaum et al.,
2002). Hence, as in Pérez-Losada et al. (2011), we used the cladogen-
ic event separating the Baleares from the proto-Iberian Peninsula
(Late Oligocene; 30–28 Mya) (Alvarez et al., 1974; Rosenbaum
et al., 2002) to time the split of Aporrectodea morenoe and Postandri-
lus bertae from Postandrilus majorcanus and Postandrilus sapkarevi.
This calibration was integrated into the analysis as a normal prior
(mean = 29 Myr; SD = 3; 95% interval = 24.1–33.9 Myr). We also cal-
ibrated the root of the tree using a lognormal prior (soft bounds) of
log (mean) = 0.0, minimum age (offset) = 200 Myr and log (SD) = 2.5,
which gives the root a 95% interval of 200–261.1 Myr. We used this
calibration to represent the minimum age of the main earthworm
lineages in our tree, which are considered of Gondwanan origin
(James and Davidson, 2012). We used the gene evolutionary rates
estimated in Pérez-Losada et al. (2011) as initial values for the uni-
form priors chosen for the lognormal relaxed clock rates in our
BEAST analyses. Two runs 2 � 107 generations long were completed
and combined using LogCombiner. All the output generated by
BEAST was analyzed in Tracer v1.5 and a chronogram was depicted
in FigTree. One-hundred and twenty-one of the 127 estimated
parameters presented effective sample size (ESS) values >200.

2.6. Evolution of morphological and ecological characters

We assessed the evolutionary history of the lumbricid sper-
mathecae and ecotypes by using the Bayesian approach imple-
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mented in BEAST v1.7.4 (Drummond and Rambaut, 2007). The
spermathecae included eight states (0, 1, 2, 3, 5, 6, 7 and P8 pairs),
whereas the ecotypes included three states (epigeic, endogeic and
anecic). The error associated with the characters under study
(mapping uncertainty) was taken into account by estimating pos-
terior probabilities for the ancestral states. DNA partitions were
analyzed separately using the GTR + G + I model of nucleotide sub-
stitution, a Yule speciation prior – a traditional speciation model
for species-level data (Drummond et al., 2006), and the relaxed
lognormal molecular clock rate variation model. We used a sym-
metric model of trait substitution with an approximate continuous
time Markov chain rate reference for the trait.clock.rate (Ferreira
and Suchard, 2008). Such prior estimation is recommended when
explicit prior information is unavailable. An exponential prior
(mean = 1 change/Myr) was also tested, but no significant differ-
ences in character state posterior probabilities were observed.
Two independent runs 2 � 107 generations long were performed
and then combined in LogCombiner v1.7.4 (part of the BEAST pack-
age). Convergence and mixing was evaluated in Tracer v1.5. Pheno-
typic characters were annotated in TreeAnnotator v1.7.4 (part of
the BEAST package) and visualized in FigTree v1.3.1.
3. Results

The DNA and DNA + morphology ML and Bayesian trees, includ-
ing all of the 182 taxa used in the analysis, are presented in
Figs. S3–S6 in supplementary material. Summary versions of these
trees are shown in Figs. 1–4 to facilitate the visualization and com-
parison of Lumbricidae evolutionary relationships within and
among datasets. The summary trees included only the three closest
outgroup species (Criodrilidae and Hormogastridae; see below) to
the ingroup and 86 Lumbricidae taxa representing conspecific
monophyletic assemblages in the full trees. The chronogram in
Fig. 4 included all outgroups, so the ages of the deeper Lumbricina
nodes (root included) could be compared.
3.1. Lumbricidae systematics

The 28 Lumbricidae genera were distributed in 11 clades (A to K
in Fig. 1). Our ML and Bayesian phylogenetic trees were very sim-
ilar to each other for each of the three datasets (Figs. 1–3 and
Figs. S3–S6 in supplementary material), with only a few shallow
nodes with low support and short branch lengths varying between
methods; therefore both ML and Bayesian trees will be considered
together unless otherwise stated. Criodrilidae and Hormogastridae
were the closest relatives to Lumbricidae, while the other Lumbri-
cina families in the outgroup were significantly separated (Boot-
strap proportions [BP] > 70% and Bayesian posterior probability
[PP] P 0.95) (Figs. S5 and S6 in supplementary material). All the
trees depicted Lumbricidae as a monophyletic group, but with
low support (BP < 70% and PP < 0.95). However, high clade support
(BP = 85% and PP = 1) for the family was obtained in the DNA tree
(Fig. 1) and DNA + morphology tree (Fig. 2) below the Diporodrilus
clade – the next node in the Lumbricidae tree.

Monophyly of Lumbricidae genera represented by P2 species
varied between data sets. In the DNA and DNA + morphology trees
(Figs. 1 and 2), ten genera (Allolobophora, Aporrectodea, Cataladrilus,
Cernosvitovia, Dendrobaena, Healyella, Helodrilus, Octodrilus, Octola-
sion, and Postandrilus) were para or polyphyletic as currently
defined, while eight genera were monophyletic (Bimastos, Diporo-
drilus, Eiseniona, Eisenia, Eisenoides, Lumbricus, Prosellodrilus, and
Scherotheca). In the morphological trees (Fig. 3), ten genera were
para or polyphyletic (Allolobophora, Aporrectodea, Bimastos, Catal-
adrilus, Cernosvitovia, Dendrobaena, Eiseniona, Helodrilus, Octodrilus
and Scherotheca) and seven genera were monophyletic (Eisenia,
Eisenoides, Healyella, Lumbricus, Octolasion, Postandrilus, and Pro-
sellodrilus). Over all trees Eisenia, Eisenoides, Lumbricus and Prosello-
drilus were always monophyletic while Allolobophora, Aporrectodea
Cataladrilus, Cernosvitovia, Dendrobaena, Helodrilus and Octodrilus
were always non-monophyletic. Molecular and morphological
trees showed disparities in their topologies regarding the positions
of Diporodrilus, Octodrilus, Bimastos, Octolasion and Eisenia. Conse-
quently, DNA and morphology trees were significantly different
according to the S–H test (P < 0.001) and Bayesian (PP < 0.001)
topological tests.

The DNA + morphology tree (Fig. 2) and DNA tree (Fig. 1)
showed very similar topologies, except for the relationships of
some taxa in clade F (Fig. 1) and the position of Satchellius. Clade
support was also similar between these two trees, although some
internal nodes (including the most recent common ancestor of
clade H) were significantly supported (BP P 70% and/or
PP P 0.95) in the DNA tree but not in the DNA + morphology tree
and vice versa. The morphology tree showed support for only four
shallow clades.

The DNA trees also suggest the existence of at least one poten-
tial new species (Dendrobaena octaedra, clade E) based on the
length (i.e. genetic divergence) of the branches connecting them
and their phylogenetic position. The taxonomic status and evolu-
tion of the Aporrectodea species complex has already been dis-
cussed elsewhere (Pérez-Losada et al., 2009, 2012; Fernández
et al., 2012). Sample 394 Lumbricidae may also be a new species;
however, the specimens were all juveniles and although they were
morphologically different from any other adults collected in the
same area, we were not able to identify them.
3.2. Evolution of morphological and ecological characters

The phylogenetic trees and Bayesian BEAST analysis of the sper-
mathecae (Fig. 5, left) did not show a trend towards reduction of
the number of spermathecae from P8 to 0. Our analyses strongly
support that the ancestor to all the current lumbricids had two
pairs of spermathecae (root PP = 0.99) and that both athecate taxa
and those with variable numbers of spermathecae pairs evolved
multiple times from 2-paired ancestors (PP > 0.95 for most of the
ancestral nodes). The phylogenetic and BEAST analyses of the eco-
types (Fig. 5, right) showed that the endogeic ecotype was the first
to evolve in the Lumbricidae (root PP = 1), while the epigeic and
anecic ecotypes evolved multiples times from endogeic ancestors
(PP > 0.95 for most of the ancestral nodes).
4. Discussion

4.1. Lumbricidae systematics

The ML and Bayesian phylogenies (Fig. 1) currently represent
the most comprehensive hypotheses of the evolutionary relation-
ships of the Lumbricidae in terms of data (5866 aligned DNA sites
and 22 morphological characters) and taxon (28 genera) sampling.
The phylogenetic trees presented here support some long-held sys-
tematic hypotheses regarding lumbricid earthworms and reject
others. Some differences in branching order within the outgroup
families were found here compared to that in James and
Davidson (2012), but those discrepancies could be due to taxon
and/or gene sampling differences and should not affect our conclu-
sions. In the full trees (Figs. S3–S6 in supplementary material), Cri-
odrilidae was depicted as the sister taxon to
Lumbricidae + Hormogastridae. Stephenson (1930) also suggested
a close morphological relationship between Lumbricidae and Cri-
odrilidae, while Qiu and Bouché (1998a) considered Criodrilus lac-
uum Hoffmeister, 1845 a hormogastrid secondarily adapted to
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aquatic life. Additionally, molecular phylogenetic analyses by
Jamieson (1988) placed Criodrilus in Almidae, while James and
Davidson (2012) showed Hormogastridae as the closest relative
to Lumbricidae followed by Criodrilidae. All of these authors
(except Jamieson, 1988) suggest a close relationship between Lum-
bricidae, Hormogastridae and Criodrilidae. These three families
also share overlapping geographical distributions in Western Eur-
ope, which suggests the possibility of a common origin for all
and their inclusion in the same taxonomic group.

Previous studies and the present study have confirmed need to
reassess the status of many lumbricid genera. Our phylogenetic
analyses revealed that at least ten Lumbricidae genera as currently
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defined do not form monophyletic assemblages, indicating the
need for revision of both the taxonomy and the underlying hypoth-
esis of character evolution. Previous attempts (Sims, 1983;
Reynolds, 1995; Gates, 1980) to resolve Lumbricidae systematics
and more recent phylogenetic studies (Briones et al., 2009;
Pérez-Losada et al., 2012; Klarica et al., 2012) have consistently
demonstrated that the Lumbricidae classification needs extensive
revision. Consensus has not been reached for the placement (or
validity) of even some of the most commonly encountered lum-
bricids (Csuzdi and Zicsi, 2003; Blakemore, 2008).

Within the Lumbricidae, our molecular trees depicted Diporodri-
lus (Diporodrilinae Bouché, 1970) as the most basal lumbricid
(Lumbricinae Rafinesque-Schmaltz, 1815), in agreement with Qiu
and Bouché (1998a), who consider this genus a subfamily or even
a family. Our Lumbricidae tree largely disagrees with previous phy-
logenetic hypotheses; such discrepancy is likely caused by the sto-
chastic error (i.e. limited sequence length) and the low
phylogenetic signal of the genes analyzed (e.g. Cech et al., 2005;
Pop et al., 2003; Briones et al., 2009) and/or their narrower taxo-
nomic scope (Pérez-Losada et al., 2005; Pérez-Losada et al., 2009;
Domínguez and Pérez-Losada, 2010; Pérez-Losada et al., 2011;
Klarica et al., 2012). Previous phylogenetic analyses of the Lumbric-
idae generated trees with low support (BP < 70% and PP < 0.95) for
most or all clades above the genus level, or were biased because of
the few genera (<10) or congeneric species included.

The morphology-based phylogeny confirmed the taxonomic
status of seven Lumbricidae genera (monophyla, e.g. Eisenia) and
rejected the validity of ten others (paraphyla; e.g. Allolobophora);
these assemblages were fairly consistent with those in our molec-
ular phylogenies. Moreover, the morphology trees were also able
to separate the lumbricids from the other Lumbricina families,
but they produced relationships within the Lumbricidae very dif-
ferent (and unsupported) from those generated in the molecular
trees; none of the associations among the backbone clades in the
molecular trees were recovered. This highlights the homoplasy or
the low phylogenetic signal of the morphological features com-
monly used in earthworm alpha-taxonomy. Although these char-
acters are useful for identifying Lumbricidae species, they seem
unreliable to reconstruct Lumbricidae evolutionary relationships
or to delimit supraspecific taxa. Earthworms do not have hard
parts, and other features of their internal anatomy may be more
informative for those purposes; the study of those features is tech-
nically demanding, time consuming, and often prone to producing
odd artefacts. Some of these problems could be circumvented by
applying non-invasive and non-destructive three-dimensional
reconstruction techniques such as micro-computed tomography
(e.g. Fernández et al., 2014).

4.2. Phylogeography and time divergence

Our phylogenies clearly separate a Holarctic clade composed of
the Lumbricidae, Criodrilidae and Hormogastridae, from the other
Crassiclitellata families, which have different geographical distribu-
tions. The divergence time estimation analysis (BEAST: Fig. 4) sug-
gests that such clade diversified (crown age) in the lower
Cretaceous 125.2 (114.2–137.1) Mya. Similarly the Lumbricidae
have a Palearctic origin, given that the basal members of the clade
in our tree are in Europe only. The chronogram also indicates that
the monophyletic Lumbricidae genera diversified (crown ages) from
the lower Miocene 20.5 (14.6–27.1) Mya (Eiseniona) to the Paleocene
61.5 (53.5–68.6) Mya (Eisenia). Our time estimates are not signifi-
cantly different from those reported by Novo et al. (2011) for the
diversification of Hormogastridae-Lumbricidae clade (83–124
Mya), who used multiple time estimators (including BEAST) and
one calibration (the separation of the Corso-Sardinian microplate
from continental Europe ca. 33 Mya). However, the authors also
acknowledged that their time estimates represent a minimum age
for the family and that its origin may be older. Both ours and Novós
time estimates are older than those proposed by Bouché (1972) for
the origin of the Lumbricoidea families (Late Cretaceous – Early
Paleogene; 100–55 Mya) based on current earthworm distributions;
but not as old as those proposed by Omodeo (2000), who based on
the opening of the South Atlantic, suggested that some sister pairs
of confamilial Lumbricoidea genera in Africa and South America
have diverged 180 Mya. Ancient patterns of diversification have also
been suggested for other widespread terrestrial groups like the Ony-
chophorans (Murienne et al., 2014), which are thought to have
diversified prior to the break-up of Pangaea.

The reliability of these time estimates needs to be considered.
Fossils are the main source of external information for calibrating
molecular phylogenies of species. Unfortunately, as far as we
know, no Lumbricidae fossils have been found. Additionally,
molecular rates of substitution may vary across taxa (Novo et al.,
2012). Nonetheless, the molecular time estimates appear to be
supported by additional evidence from at least one taxon. The
BEAST time estimate of the split of the Corsican earthworms S. cor-
sicana and Scherotheca sp1 and sp2 from the Spanish S. gigas and
French S. savignyi (28.4–44.9 Mya) partly overlaps with the geolog-
ical time (30–28 Mya) estimated for the separation of Corsica (at
the time part of larger microplate) from the proto-Iberian Penin-
sula (Alvarez et al., 1974; Rosenbaum et al., 2002). Thus, if we
assume that this vicariant event caused speciation of these taxa
as seen in Postandrilus (Pérez-Losada et al., 2011), the timing would
be consistent with our molecular estimate. Other earthworm gen-
era in the analyses also have an insular/continental distribution
(e.g. Octolasion and Octodrilus; see Table S1 in supplementary
material), but they are considered peregrine earthworms and the
effect of human transport may mask the effect of geological pro-
cesses and/or animal dispersion.

Our phylogenetic analyses suggest correlations between genea-
logical lineages and geographical distributions for at least 15 of the
34 clades shown in Fig. 4. Even if we exclude the peregrine species,
at least 12 of those associations may result from tectonic processes
and/or geographic isolation. Clade 1 clusters species from Corsica
and Sardinia, while clades 2 and 10 include species from Spain,
France, Majorca and Corsica. All five geographical regions were
combined before formation of the islands in the Late Oligocene
(30–28 Mya) (Alvarez et al., 1974; Rosenbaum et al., 2002). Clade
3 includes species from the nearby countries of Romania and Ser-
bia; clade 4 from southern France; clade 5 from Hungary and
Romania; clade 6 from Serbia; clade 7 from Turkey; clade 8 from
Hungary and Serbia; clade 9 from Spain and clade 10 from Spain,
Corsica and South France and clades 11 and 12 from USA.

From this, we can conclude that the evolution of Lumbricidae in
Europe is largely geographically structured, since genera that have
been sampled in closer areas are more likely to share a common
ancestor. This is not surprising considering the limited dispersal
ability of earthworms (Novo et al., 2010; Pérez-Losada et al.,
2011) and the small areas of occurrence of many of the analyzed
taxa. Previous studies have highlighted that isolation by distance
and allopatric speciation are common mechanisms of differentia-
tion in earthworms (Chang et al., 2008; King et al., 2008; Novo
et al., 2009, 2010). Speciation related to plate movement and con-
tinental masses has been already described in other earthworms
from Europe (Novo et al., 2011; Pérez-Losada et al., 2011) and
New Zealand (Buckley et al., 2011). Similarly, climate and sea level
changes have also been invoked to explain earthworm geographic
structuring in European (Pérez-Losada et al., 2011; Fernández
et al., 2012) and/or Japanese (Minamiya et al., 2009) earthworms.

Our molecular time estimates also suggest that North American
(Bimastos and Eisenoides) and Eurasian lumbricids may have been
separated as the result of the final split of Laurasia. The Bimastos-
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Eisenoides clade also containing Allolobophoridella and Dendrodrilus
would have split from their closest relatives (Eisenia) in the Upper
Cretaceous 72.6 (69.2–76.1) Mya, about the time of the final split of
Laurasia into Eurasia and North America (Cox and Moore, 2010).
Since it is unlikely that earthworms migrated (or were trans-
ported) across oceans 30 Mya after the split of Laurasia, these
results suggest that, either both Allolobophoridella and Dendrodrilus
went extinct in North America (with current records based on acci-
dental transport by humans) and/or Bimastos species (e.g., Bimastos
syriacus; ordinarily assigned to Healyella) occur(ed) also in Eurasia
but have not been found yet or went extinct. Although such a vicar-
iant event requires further confirmation based on additional taxon
sampling, the good concordance between molecular and geologic
estimates seems to support the vicariance hypothesis.

4.3. Evolution of morphological and ecological characters

The phylogenetic trees and Bayesian analysis of the number of
spermathecae suggest that the primitive lumbricid was likely her-
maphroditic (all taxa in clades 1 and 2 of Fig. 4 are hermaphro-
ditic), and had two pairs of spermathecae (Fig. 5). From that
ancestor, taxa with more (3–8 pairs) or fewer (0 and 1 pair) sper-
mathecae evolved multiple times. This rules out a previous
hypothesis suggesting a gradual reduction of the number of sper-
mathecae (Gates, 1972). Although polymorphic degradation of
male reproductive structures is often common in parthenogenetic
organisms, according to the scientific literature at least seven spe-
cies in our trees are parthenogenetic and have multiple spermath-
ecae [Dendrobaena octaedra (3 pairs), Aporrectodea trapezoides (2
pairs), Aporrectodea rosea (2 pairs), Octolasion tyrtaeum (2 pairs),
Octolasion lacteum (2 pairs), Dendrodrilus rubidus (2 pairs) and
Eiseniella tetraedra (2 pairs)]. Our chronogram also shows that ath-
ecate male-sterile earthworms arose for the first time in the Lum-
bricidae �75 Mya and then four more times between �70 and �25
Mya. Previous molecular studies (Fernández et al., 2011, 2012) had
already suggested that parthenogenesis emerged twice in the Apor-
rectodea trapezoides complex during the Late Miocene – Pleistocene
epochs (6.4–1.1 Mya in their analyses) from sexual ancestors,
which seem to have a strong evolutionary potential to switch from
sex to parthenogenesis or vice versa. Similarly, electrophoretical
analyses by Jaenicke and Selander (1979) and the extensive mor-
phological work of Gates (1972, 1973, 1974a,b,c, 1977) suggested
that parthenogenesis has evolved multiple times and rather
recently in the lumbricids Octolasion cyaneum and Octolasion tyrta-
eum. Our more comprehensive study indicates that some lumbricid
genera also seem to have the same evolutionary potential and/or to
exhibit different number of spermathecae (Aporrectodea, Diporodri-
lus, Allolobophora, Postandrilus, Cernosvitovia, Octodrilus, Scherothec-
a and Dendrobaena). The present findings also indicate that
spermathecae variation is a highly unreliable character for earth-
worm systematics and taxonomy. Further studies are needed to
decipher the evolution of parthenogenesis in earthworms and the
relationship between this mode of asexual reproduction and the
maintaining of non-functional reproductive structures.

Our phylogenetic trees and Bayesian ancestral state analysis
also indicate that ancient lumbricids were endogeic, and that epi-
geic and anecic earthworms evolved at least 5 and 3 times, respec-
tively. The epigeic ecotype seems to have arisen first (�80 Mya),
while the first anecic ecotype evolved more recently (�45 Mya).

Regardless of the timings, the multiple independent origins of
epigeic and anecic lifestyles suggests that adaptive diversification
did not consist of the unique evolution of epigeic (or endogeic)
niche exploitation, followed by speciation within a purely epigeic
(or endogeic) clade. Instead, the adaptive radiations occurred inde-
pendently, and there are even indications of reversals. Some of the
Eisenia species of Siberia, for example, show pigmentation and
morphology indicative of endogeic living (Perel, 1977) by earth-
worms of a typically epigeic genus.

If one were to propose that a simpler feeding and digestive system
is likely to have arisen before a more complicated one, evidence avail-
able would support a later evolution of the endogeic niche. Mutualis-
tic digestive systems involving mucopolysaccharide priming of
bacteria have been described in endogeic earthworms (Lavelle and
Spain, 2001), while epigeic and anecic earthworm are litter trans-
formers that ingest mixtures of decaying organic matter and microor-
ganisms with direct digestion (Lavelle and Spain, 2001).
Consequently one would expect the endogeic to be derived, and not
ancestral, as we found in our work. Another possibility is that the
hypothetical endogeic ancestor of all Lumbricidae had already estab-
lished the mutualistic digestive system- after all it was descended
from a long-extant lineage of earthworms. An investigation of the
digestive processes in epigeic and anecic lumbricid lineages could
show if such species can function without mutualistic gut bacteria.

5. Conclusions

Despite more than 130 years of research on earthworms, no
robust hypothesis of Lumbricidae evolutionary relationships has
yet been established. This study yielded the first well-supported
phylogeny of the family and estimated its divergence time. Using
this phylogenetic hypothesis, we validated some of the existing
taxonomic groups but rejected others. We also studied the patterns
of geographical diversification and the evolution of reproductive
strategies and ecotypic adaptations. We conclude that lumbricids
emerged in the Lower Cretaceous and that their current taxonomic
classifications must be revised and new morphological features
included. We also showed that both geological processes and geo-
graphic isolation may have affected geographical diversification,
that parthenogenesis arose multiple times in the group, and that
several non-related lumbricid genera developed similar feeding
and burrowing habits.
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