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1 Introduction

The question about existence and uniqueness of solution for the initial

value problem

x′(t) = f(t, x(t)), x(t0) = x0, (1.1)

where f : U ⊂ R × Rn → Rn, U is an open set and (t0, x0) ∈ U , is a

classical problem in the study of differential equations and it has a great

importance, as much in theory as in applications.
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In spite of the enormous literature that exists about this topic and the

great amount of sufficient conditions that imply uniqueness of solutions

(see [1, 5] and the references therein), this problem is far from being

completely solved. When (1.1) is scalar and autonomous we have sufficient

and necessary conditions for existence and uniqueness of solution (see [2]).

However, for the general case we know no condition on f being at the

same time necessary and sufficient. Neither it seems easy to find them,

as it is shown in theorem 2, chapter 12 in [6], there exists a Lebesgue

nonmeasurable function Ψ : R× R→ R such that the Cauchy problem

x′ = Ψ(t, x), x(t0) = x0,

has a unique solution x : R → R (locally absolutely continuous) through

any point (t0, x0) ∈ R2.

From now on we will center our attention in problem (1.1) with a

continuous right-hand side f . In this case Peano’s theorem ensures the

existence of at least one solution, but it is easy to give examples where

uniqueness fails: x′ = x
2
3 has infinitely many solutions through (0, 0). A

more complicated example is given by Hartman in [5], page 18, where a

scalar and continuous function f in R2 is defined in such a way that there

is more than one solution of problem (1.1) for every initial condition. A

remarkable result, related with uniqueness, is that for almost each (in the

category sense) function in the Banach space of all bounded and contin-

uous real functions defined in R2, problem (1.1) has a unique solution

(see theorem 1, chapter 12 in [6]). Nevertheless, like in the discontinuous

case, there is no characterization for uniqueness of solution. The most

important uniqueness criterion in the case of continuous f ′s is that of

Lipschitz. This classic result was given in 1876 (see [7]). Briefly, we say

that f : U ⊂ R × R → R is locally Lipschitz continuous with respect to

x, if for every (t0, x0) ∈ U there exists a neighbourhood V ⊂ U of (t0, x0)

and a constant K > 0 such that

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2| for all (t, x1), (t, x2) ∈ V .
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The Lipschitz criterion, as it is well-known, says that if f is continuous

and locally Lipschitz continuous with respect to x, then the problem (1.1)

has a unique local solution. On the other hand, it is easy to prove that the

Lipschitz criterion is not necessary: for example, in the following initial

value problem (example 1.2.2 in [1])

x′ = f(t, x) = 1 + x
2
3 , x(0) = 0, (1.2)

the function f is continuous in R2 and it is not Lipschitz continuous in

any neighbourhood of (0, 0). However, separating the variables and using

the substitution x = z3, we deduce that the unique solution of problem

(1.2) is implicitly given by the equation

3(x
1
3 − arctan(x

1
3 )) = t.

In [3] we prove the following alternative version of Lipschitz criterion

for the scalar case: if f : U ⊂ R × R → R is continuous in the open

set U , (t0, x0) ∈ U , f(t0, x0) 6= 0 and f is locally Lipschitz continuous

with respect to t, then problem (1.1) has a unique local solution. This

surprising result can be applied, for example, to the problem (1.2) for

which the usual Lipschitz criterion fails.

The present paper is organized as follows: in section 2 we establish a

local equivalence between two initial value problems, which will be funda-

mental in the proof of our results. In section 3 we generalize the version of

Lipschitz uniqueness criterion given in [3] to systems of differential equa-

tions. Some corollaries and examples are also given. In section 4 we prove

that continuity implies local uniqueness for a class of two dimensional au-

tonomous systems, which includes the Hamiltonian ones, provided that

the initial condition is not a critical point. This result is closed related to

that of [10].
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2 Two (locally) equivalent IVP’s

Let U ⊂ Rn+1 be an open set, f : U ⊂ Rn+1 → Rn a continuous function

and (t0, x0) ∈ U . We consider the initial value problem

x′(t) = f(t, x(t)), x(t0) = x0. (2.3)

We say that a function x : Ix → Rn is a solution of problem (2.3) if

satisfies the following conditions:

(i) Ix ⊂ R is an interval (not necessarily open) with non empty interior

such that t0 ∈ Ix;

(ii) for all t ∈ Ix, (t, x(t)) ∈ U ;

(iii) for all t ∈ Ix there exists x′(t) and x′(t) = f(t, x(t));

(iv) x(t0) = x0.

We point out that from (iii) it follows that x belongs to C1.

As usual, we define the norm ‖ · ‖∞ : RN → [0,∞), for N ∈ N, as

‖(x1, x2, . . . , xN )‖∞ := max
i∈{1,2,...,N}

|xi|,

and the open ball with center x ∈ RN and radius r > 0 as

B∞(x, r) := {y ∈ RN : ‖x− y‖∞ < r}.

Since f := (f1, f2, . . . , fn−1, fn) is continuous, when fn(t0, x0) 6= 0

there exist open intervals Ji ⊂ R, with i ∈ {0, 1, . . . , n}, such that setting

B = J1 × J2 × · · · × Jn−1 × Jn we have that

1. (t0, x0) ∈ J0 ×B ⊂ U ;

2. fn(t, x) 6= 0 for all (t, x) ∈ J0 ×B.

Then we can define f̃ : Jn × B̃ ⊂ Rn+1 → Rn, where B̃ = J1 × J2 ×
· · · × Jn−1 × J0, as

f̃i(r, y1, . . . , yn−1, yn) =
fi(yn, y1, . . . , yn−1, r)

fn(yn, y1, . . . , yn−1, r)
if i ∈ {1, 2, . . . , n− 1}

and

f̃n(r, y1, . . . , yn−1, yn) =
1

fn(yn, y1, . . . , yn−1, r)
.
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Moreover, if x0 = (x1
0, . . . , x

n
0 ) ∈ Rn we define

r0 = xn
0 ∈ Jn and y0 = (x1

0, x
2
0, . . . , x

n−1
0 , t0) ∈ B̃,

and we consider the initial value problem

y′(r) = f̃(r, y(r)), y(r0) = y0. (2.4)

The proof of the following result is based on the chain rule and the

formula for the derivative of the inverse.

Theorem 2.1 Let f : J0 × B ⊂ Rn+1 → Rn be a continuous function,

(t0, x0) ∈ J0 ×B and fn(t, x) 6= 0 for all (t, x) ∈ J0 ×B.

I) If x : Jx ⊂ J0 → B, with x = (x1, x2, . . . , xn), is a solution of the

problem

x′(t) = f(t, x(t)), x(t0) = x0,

then y : xn(Jx) ⊂ Jn → B̃ given by y = (x1 ◦ x−1
n , . . . , xn−1 ◦ x−1

n , x−1
n ) is

a solution of

y′(r) = f̃(r, y(r)), y(r0) = y0.

II) Conversely, if y : Jy ⊂ Jn → B̃, with y = (y1, y2, . . . , yn), is a solution

of the problem

y′(r) = f̃(r, y(r)), y(r0) = y0,

then x : yn(Jy) ⊂ J0 → B given by x = (y1 ◦ y−1
n , . . . , yn−1 ◦ y−1

n , y−1
n ) is

a solution of

x′(t) = f(t, x(t)), x(t0) = x0.

In the following example we illustrate the theorem 2.1

Example 2.1 We consider the function f : R × (0,∞) × R → R2 given

by

f(t, x1, x2) =

�−t

x1
,

1

x1

�

and the problem

8
>>>><
>>>>:

x′1 = f1(t, x1, x2) =
−t

x1
, x1(0) = 1,

x′2 = f2(t, x1, x2) =
1

x1
, x2(0) = 0.

(2.5)
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Since f2(t, x1, x2) = 1
x1
6= 0 for all (t, x1, x2) ∈ R × (0,∞) × R, we can

define f̃ : R× (0,∞)× R→ R2 by

f̃(r, y1, y2) =

�
f1(y2, y1, r)

f2(y2, y1, r)
,

1

f2(y2, y1, r)

�
= (−y2, y1).

Hence, as (y1(t), y2(t)) = (cos(t), sin(t)) for all t ∈ (−π
2
, π

2
) is a solu-

tion of 8
>>><
>>>:

y′1 = f̃1(r, y1, y2) = −y2 , y1(0) = 1,

y′2 = f̃2(r, y1, y2) = y1 , y2(0) = 0,

it follows from theorem 2.1 that for all t ∈ sin(−π
2
, π

2
) = (−1, 1)

(x1(t), x2(t)) = (cos(arcsin t), arcsin t),

defines a solution of (2.5).

Next, we establish that the local uniqueness for problem (2.4) implies

the local uniqueness for problem (2.3). This result is fundamental in the

following sections.

Theorem 2.2 Let U ⊂ Rn+1 be an open set, f : U ⊂ Rn+1 → Rn a

continuous function and (t0, x0) ∈ U such that fn(t0, x0) 6= 0.

If there exists α̃ > 0 such that the problem (2.4) has a unique solution

on the interval [r0−α̃, r0+α̃] then there exists α > 0 such that the problem

(2.3) has a unique solution on the interval [t0 − α, t0 + α].

Proof. We can suppose without loss of generality that fn(t0, x0) > 0.

Since f is continuous, fn(t0, x0) > 0 and U is open there exist constants

a, b, m, M > 0 such that

i) J0×B ⊂ U , where J0 := (t0−a, t0 +a) and B := J1×J2× . . .×Jn,

with Ji := (xi
0 − b, xi

0 + b) for i ∈ {1, 2, . . . , n};

ii) 0 < m ≤ fn(t, x) for all (t, x) ∈ J0 ×B;

iii) ‖f(t, x)‖∞ ≤ M for all (t, x) ∈ J0 ×B.

By hypothesis there exists a unique solution y : [r0 − α̃, r0 + α̃] → B̃

of (2.4). Moreover, yn is continuous, increasing and yn(r0) = t0. Then,

there exists α1 > 0 such that [t0 − α1, t0 + α1] ⊂ yn([r0 − α̃, r0 + α̃]). We

take 0 < α < min{α1,
b

M
, α̃

M
}.
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Existence of a solution on the interval [t0 − α, t0 + α]. By part (II) of

theorem 2.1 the function x : yn([r0− α̃, r0 + α̃]) → B, defined as x = (y1 ◦
y−1

n , . . . , yn−1 ◦ y−1
n , y−1

n ) is a solution of (2.3). Moreover [t0−α, t0 +α] ⊂
yn([r0− α̃, r0 + α̃]) and therefore x is a solution of (2.3) in [t0−α, t0 +α].

Uniqueness of solution on the interval [t0 − α, t0 + α]. Suppose that x̄ :

Ix̄ → Rn is a solution of (2.3) with Ix̄ ⊂ [t0−α, t0 +α]. We will prove that

x̄(Ix̄) ⊂ B and x̄n(Ix̄) ⊂ (r0 − α̃, r0 + α̃). Indeed, define b1 := min{b, α̃}
and suppose that there exists t1 ∈ Ix̄ such that ‖x̄(t1) − x0‖∞ ≥ b1 (we

suppose that t1 > t0; the case t1 < t0 can be treated analogously). Put

t2 := inf{t ∈ (t0, t1] : ‖x̄(t) − x0‖∞ = b1}. It is obvious that for all

t ∈ (t0, t2) we have that x̄(t) ∈ B∞(x0, b) and then ‖f(t, x̄(t))‖∞ ≤ M for

all t ∈ (t0, t2). Hence

‖x̄(t2)−x0‖∞ =


Z t2

t0

f(s, x̄(s))ds


∞
≤
Z t2

t0

‖f(s, x̄(s))‖∞ ds ≤ Mα < b1,

in contradiction with the definition of t2.

Then, since x̄ : Ix̄ → Rn is a solution of (2.3) and x̄(Ix̄) ⊂ B, by part

(I) of theorem 2.1 we have that the function ȳ : x̄n(Ix̄) → B̃, defined

as ȳ = (x̄1 ◦ x̄−1
n , . . . , x̄n−1 ◦ x̄−1

n , x̄−1
n ) is a solution of (2.4). Moreover,

x̄n(Ix̄) ⊂ (r0 − α̃, r0 + α̃) and then we have that y(r) = ȳ(r) for all

r ∈ x̄n(Ix̄). Therefore, for all t ∈ Ix̄ we have that

x̄(t) = (ȳ1 ◦ ȳ−1
n (t), . . . , ȳn−1 ◦ ȳ−1

n (t), ȳ−1
n (t))

= (y1 ◦ y−1
n (t), . . . , yn−1 ◦ y−1

n (t), y−1
n (t)) = x(t).

ut

3 An alternative version of Lipschitz unique-

ness criterion

We say that f : U ⊂ Rn+1 → Rn is Lipschitz continuous when fixing

component i0 ∈ {0, 1, . . . , n} if there exists K > 0 such that

‖f(u0, . . . , vi0 , . . . , un)− f(ū0, . . . , vi0 , . . . , ūn)‖∞ ≤
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K‖(u0, . . . , ui0−1, ui0+1, . . . , un)− (ū0, . . . , ūi0−1, ūi0+1, . . . , ūn)‖∞,

for all (u0, . . . , vi0 , . . . , un), (ū0, . . . , vi0 , . . . , ūn) ∈ U and K is called a

Lipschitz constant.

We say that f is locally Lipschitz continuous when fixing component

i0 ∈ {0, 1, . . . , n} if for every (t, x) ∈ U there exists a neighbourhood

V ⊂ U of (t, x) such that the restriction of f to V is Lipschitz continuous

when fixing component i0 ∈ {0, 1, . . . , n}.
We say that f is (locally) Lipschitz continuous with respect to x if it is

(locally) Lipschitz continuous when fixing component i0 = 0.

It is well-known that if there exists ∂f(t,x)
∂x

and it is continuous in U ,

then f is locally Lipschitz continuous with respect to x. An analogous

result, of course, is valid for the case of functions locally Lipschitz contin-

uous when fixing a component i0.

Now, we recall the classical Lipschitz criterion for the existence and

local uniqueness of solutions for problem (2.3). It can be found in [4, 5, 8].

Theorem 3.1 Let U ⊂ Rn+1 be an open set, f : U ⊂ Rn+1 → Rn

and (t0, x0) ∈ U . We suppose that f is continuous and locally Lipschitz

continuous with respect to x.

Then there exists α > 0 such that the problem (2.3) has a unique

solution in [t0 − α, t0 + α].

Next, we present the main result of this section.

Theorem 3.2 Let U ⊂ Rn+1 be an open set, f : U ⊂ Rn+1 → Rn

and (t0, x0) ∈ U . We suppose that f is continuous and locally Lipschitz

continuous when fixing a component i0 ∈ {0, 1, . . . , n}.
Then there exists α > 0 such that the problem (2.3) has a unique

solution in [t0 − α, t0 + α] provided that either i0 = 0 or fi0(t0, x0) 6= 0.

Proof. If i0 = 0 theorem 3.2 reduces to theorem 3.1. When i0 6= 0 we can

suppose without loss of generality that i0 = n and fn(t0, x0) > 0. Then

there exist open intervals Ji ⊂ R, with i ∈ {0, 1, . . . , n}, and constants

m, M > 0 such that
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1. (t0, x0) ∈ J0 ×B ⊂ U ;

2. fn(t, x) 6= 0 for all (t, x) ∈ J0 ×B;

3. 0 < m ≤ fn(t, x) for all (t, x) ∈ J0 ×B;

4. ‖f(t, x)‖∞ ≤ M for all (t, x) ∈ J0 ×B;

5. f : J0 × B → Rn is Lipschitz continuous in J0 × B when fixing

component i0 = n, with Lipschitz constant K > 0;

where B = J1×J2×· · ·×Jn−1×Jn. We will prove that f̃ : Jn×B̃ → Rn is

Lipschitz continuous with respect to y ∈ B̃. Indeed, if i ∈ {1, 2, . . . , n−1}
we have that

|f̃i(r, y1, . . . , yn)− f̃i(r, ȳ1, . . . , ȳn)| =

����
fi(yn, y1, . . . , r)

fn(yn, y1, . . . , r)
− fi(ȳn, ȳ1, . . . , r)

fn(ȳn, ȳ1, . . . , r)

����

≤ 2MK‖(y1, . . . , yn)− (ȳ1, . . . , ȳn)‖∞
m2

.

On the other hand, if i = n we have that

|f̃n(r, y1, . . . , yn)− f̃n(r, ȳ1, . . . , ȳn)| =

����
1

fn(yn, y1, . . . , r)
− 1

fn(ȳn, ȳ1, . . . , r)

����

≤ K‖(y1, . . . , yn)− (ȳ1, . . . , ȳn)‖∞
m2

.

Then, taking K̃ := max{ 2MK
m2 , K

m2 }, we obtain that f̃ : Jn × B̃ → Rn

is Lipschitz continuous with respect to y ∈ B̃. Therefore from theorem

3.1 and theorem 2.2 it follows the existence of a constant α > 0 such that

the problem (2.3) has a unique solution in the interval [t0 − α, t0 + α]. ut

Example 3.1 The following autonomous initial value problem

8
>>><
>>>:

x′1 = 1 , x1(0) = 1,

x′2 =
p
|x2| , x2(0) = 0,

has infinitely many solutions. We have that f is continuous in R2 and lo-

cally Lipschitz continuous when fixing component i0 = 2, but f2(x1, x2) =
p
|x2| vanishes at the initial condition (1, 0). On the other hand, f1(x1, x2) =

1 6= 0 but f is not locally Lipschitz continuous when fixing component

i0 = 1.
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Remark 3.1 In theorem 3.2 we use the Lipschitz criterion to ensure local

uniqueness for problem (2.4). We have chosen Lipschitz criterion for

clarity and simplicity, but in an analogous way we can adapt other more

general criteria: Osgood, Nagumo, Perron, Kamke... As an example we

are going to give an alternative version of Osgood’s criterion.

Osgood’s criterion: (see theorem 1.4.2 in [1]) Let U ⊂ R2 be an open

set, f : U ⊂ R2 → R and (t0, x0) ∈ U . We suppose that f is continuous

and it satisfies that

|f(t, x1)− f(t, x2)| ≤ g(|x1 − x2|) for all (t, x1), (t, x2) ∈ U,

where g : [0,∞) → R is continuous, nondecreasing, g(0) = 0, g(z) > 0 if

z > 0 and lim
ε→0+

Z 1

ε

dz

g(z)
= ∞.

Then there exists α > 0 such that the problem (2.3) has a unique

solution in [t0 − α, t0 + α].

When f is scalar, Lipschitz criterion is a particular case of Osgood’s

(taking g(z) = Kz). Therefore, for a scalar f the following theorem is

more general than theorem 3.2.

Alternative version of Osgood’s criterion: Let U ⊂ R2 be an open

set, f : U ⊂ R2 → R and (t0, x0) ∈ U . We suppose that f is continuous,

f(t0, x0) 6= 0 and

|f(t1, x)− f(t2, x)| ≤ g(|t1 − t2|) for all (t1, x), (t2, x) ∈ U,

where g : [0,∞) → R is continuous, nondecreasing, g(0) = 0, g(z) > 0 if

z > 0 and lim
ε→0+

Z 1

ε

dz

g(z)
= ∞.

Then there exists α > 0 such that the problem (2.3) has a unique

solution in [t0 − α, t0 + α].

3.1 Some consequences of theorem 3.2

We are going to give some corollaries and particular cases of theorem 3.2.
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3.1.1 Global existence results.

Corollary 3.3 Let U ⊂ Rn+1 be an open set and f : U ⊂ Rn+1 → Rn.

We suppose that f is continuous and for each (t, x) ∈ U there exist a

component i0 = i0(t, x) ∈ {0, 1, . . . , n} and a real number b = b(t, x) > 0

such that f restricted to B∞((t, x), b) is Lipschitz continuous when fixing

component i0 and either i0 = 0 or fi0(t, x) 6= 0.

Then, given (t0, x0) ∈ U there exists a unique maximal solution x :

J → Rn of problem (2.3), that is, if z : I → Rn is also a solution of (2.3)

trough (t0, x0), then I ⊂ J and x(t) = z(t) for all t ∈ I.

Proof. By theorem 3.2 problem (2.3) has an unique local solution trough

any initial condition (t, x) ∈ U . Then, standard arguments (see theorem

5.6 in [8]) imply that for a fixed initial condition (t0, x0) ∈ U there exists

a unique maximal solution x : J → Rn of problem (2.3). ut

Example 3.2 We consider the function

f(t, x) =

8
>>><
>>>:

e
√

x + t3 sin x , if x ≥ 0,

x ln(t2 + 1) + cos x , if x < 0.

It is easy to check that f is locally Lipschitz continuous with respect to x in

R2\{(t, 0) : t ∈ R} and that it is not Lipschitz continuous with respect to x

in any neighbourhood of (t0, 0), with t0 ∈ R. Nevertheless f(t0, 0) = 1 6= 0

and moreover f is Lipschitz continuous when fixing component i0 = 1 in

every bounded neighbourhood of (t0, 0), for all t0 ∈ R. Hence, corollary 3.3

ensures that there exists a unique maximal solution through each initial

condition (t0, x0) ∈ R2.

3.1.2 Autonomous problems.

Corollary 3.4 Let D ⊂ Rn be an open set and f : D → Rn a continuous

vector field. If x0 ∈ D and one of the two following conditions holds

i) f is locally Lipschitz continuous,
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ii) there exists i0 ∈ {1, 2, . . . , n} such that fi0(x0) 6= 0 and f is locally

Lipschitz continuous when fixing component i0,

then the problem

x′ = f(x), x(0) = x0,

has a unique local solution.

Example 3.3 The function f : R2 → R2 given by

f(x1, x2) = (sin (x1x2),
p
|x2|+ 1)

is not Lipschitz continuous in any neighbourhood of (0, 0). However,

f2(0, 0) = 1 6= 0 and f is locally Lipschitz continuous fixed i0 = 2. Then,

by part ii) of corollary 3.4 we have that the problem

8
>>><
>>>:

x′1 = sin (x1x2) , x1(0) = 0,

x′2 =
p
|x2|+ 1 , x2(0) = 0,

has a unique local solution.

We have proved in corollary 3.4 that if f : D ⊂ Rn → Rn is continuous

and x0 ∈ D is not a critical point, then it’s enough that f be locally

Lipschitz continuous with respect to n−1 variables to ensure uniqueness of

local solution. In the following example we show that if f : D ⊂ Rn → Rn

is locally Lipschitz continuous with respect to n− 2 variables uniqueness

may fail.

Example 3.4 We consider the problem

8
>>>>>>>>>><
>>>>>>>>>>:

x′1 = 1 , x1(0) = 0,

x′2 = 1 , x2(0) = 0,

...
...

x′n−1 = 1 , xn−1(0) = 0,

x′n =
p
|x1 − xn|+ 1 , xn(0) = 0,

(3.6)

with n > 2. The corresponding vector field is continuous, Lipschitz con-

tinuous with respect to (x2, x3, . . . , xn−1) and it has no critical points.
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However, x(t) = (t, t, . . . , t, t) for all t ∈ R and

x̄(t) =

8
>>><
>>>:

(t, t, . . . , t, t) , if t ≤ 0,

(t, t, . . . , t, 1
4
t2 + t) , if t > 0,

are two different solutions of problem (3.6).

3.1.3 Scalar problems.

The following result was proved in [3].

Corollary 3.5 Let U ⊂ R2 be an open set, (t0, x0) ∈ U and f : U ⊂
R2 → R a continuous function. Then there exists a unique local solution

of problem (2.3) provided one of the two following conditions holds:

i) f is locally Lipschitz continuous with respect to x,

ii) f(t0, x0) 6= 0 and f is locally Lipschitz continuous with respect to t.

Example 3.5 We consider the problem

x′ = f(t, x) = et + x
1
3 , x(0) = 0.

It is easy to see that f is not Lipschitz continuous in any neighbourhood of

(0, 0). However, as f(0, 0) = 1 6= 0 and f is locally Lipschitz continuous

with respect to t, condition ii) of corollary (3.5) ensures the existence of

a unique local solution.

In the autonomous case it is obvious that f is locally Lipschitz continu-

ous with respect to t. Therefore, from corollary 3.5 it follows immediately

the following result.

Corollary 3.6 If D ⊂ R is an open interval, f : D ⊂ R→ R is continu-

ous and f(x0) 6= 0, then there exists a unique local solution for problem

x′ = f(x), x(0) = x0. (3.7)

This result is well-known and was proved by Peano in [9]. It also can be

found in [1], theorem 1.2.7. Moreover, problem (3.7), with f not necessar-

ily continuous, has been solved by Binding in [2], where he characterizes

the existence and uniqueness of absolutely continuous solutions.
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4 An uniqueness result for a class of au-

tonomous planar systems

Let D ⊂ R2 be an open set, P, Q : D ⊂ R2 → R two continuous functions

and (x1
0, x

2
0) ∈ D. We consider the initial value problem

8
>>><
>>>:

x′1 = P (x1, x2), x1(0) = x1
0,

x′2 = Q(x1, x2), x2(0) = x2
0.

(4.8)

The main result of this section is the following.

Theorem 4.1 Assume that there exists a continuous and strictly positive

function µ : D ⊂ R2 → R and a C1-function H : D ⊂ R2 → R such that

for all (x1, x2) ∈ D we have that

−∂H(x1, x2)

∂x2
= µ(x1, x2)P (x1, x2) and

∂H(x1, x2)

∂x1
= µ(x1, x2)Q(x1, x2),

i.e., the system 8
<
:

x′1 = µ(x1, x2)P (x1, x2),

x′2 = µ(x1, x2)Q(x1, x2),

is Hamiltonian.

Then there exists α > 0 such that the problem (4.8) has a unique

solution in [−α, α], provided that the initial value (x1
0, x

2
0) is not a critical

point, i.e., (P (x1
0, x

2
0), Q(x1

0, x
2
0)) 6= (0, 0).

Proof. We suppose without loss of generality that Q(x1
0, x

2
0) 6= 0. The

corresponding problem (2.4) associated to problem (4.8) is

8
>>><
>>>:

y′1 = P (y1,r)
Q(y1,r)

, y1(x
2
0) = x1

0,

y′2 = 1
Q(y1,r)

, y2(x
2
0) = 0.

(4.9)

The first equation of this system is a scalar differential equation for which

µ is an integrating factor, i.e., the equation

y′1 =
µ(y1, r)P (y1, r)

µ(y1, r)Q(y1, r)
=
− ∂H(y1,r)

∂r
∂H(y1,r)

∂y1

, (4.10)

14



is an exact equation. Since
∂H(x1

0,x2
0)

∂y1
6= 0 it is well-known that the implicit

function theorem implies the existence of α̃ > 0 and an unique solution

y1 of (4.10) in [x2
0 − α̃, x2

0 + α̃] such that y1(x
2
0) = x1

0. Then, integrating

the second equation of (4.9) we deduce that problem (4.9) has a unique

solution in [x2
0 − α̃, x2

0 + α̃] and therefore the existence of α > 0 such that

(4.8) has a unique solution in [−α, α] follows from theorem 2.2. ut

Taking µ ≡ 1 theorem 4.1 applies to Hamiltonian systems. The follow-

ing corollary of theorem 4.1 was proved by Rebelo in [10] using a different

argument.

Corollary 4.2 Let D ⊂ R2 be an open set, H : D → R a C1-function

and (x1
0, x

2
0) ∈ D.

Then there exists α > 0 such that the Hamiltonian system
8
>>><
>>>:

x′1 = − ∂H(x1,x2)
∂x2

, x1(0) = x1
0,

x′2 = ∂H(x1,x2)
∂x1

, x2(0) = x2
0,

(4.11)

has a unique solution in [−α, α], provided that (x1
0, x

2
0) is not a critical

point, i.e., ∇H(x1
0, x

2
0) 6= 0.

Uniqueness of solution may fail when the initial condition is a critical

point, as we illustrate in the following example (for a class of examples

with this property see remark 1 in [10]).

Example 4.1 We consider H : R2 → R given by

H(x1, x2) =

Z x1

0

p
|s|ds−

Z x2

0

p
|s|ds for all (x1, x2) ∈ R2,

which is C1. The associated Hamiltonian system is
8
>>><
>>>:

x′1 =
p
|x2|,

x′2 =
p
|x1|,

and (0, 0) is a critical point. We have that x1(t) = x2(t) = 0 for all t ∈ R
and

x̄1(t) = x̄2(t) =

8
<
:

0 , if t ≤ 0,

t2

4
, if t > 0,
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are two different solutions through the initial condition (0, 0) (in fact in-

finitely many solutions exist).
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[7] Lipschitz, R., Sur la possibilité d’intégrer complétement un système
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