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Abstract. In this paper we prove new existence results for nonautonomous

systems of first order ordinary differential equations under weak conditions on

the nonlinear part. Discontinuities with respect to the unknown are allowed to

occur over general classes of time-dependent sets which are assumed to satisfy

a kind of inverse viability condition.
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1 Introduction and preliminaries

We are concerned with the existence of Carathéodory solutions for

x′(t) = f(t, x(t)) for almost all (a.a.) t ∈ I := [t0, t0 + L], x(t0) = x0, (1.1)

where L > 0, t0 ∈ R, x0 ∈ Rm and f : I × Rm → Rm may be discontinuous.

We recall that Carathéodory solutions are absolutely continuous functions on I

that satisfy (1.1). We shall denote by C the set of all Carathéodory solutions of

(1.1).

The present paper’s point of view somewhat recaptures the spirit of [18]:

we pass from (1.1) to a solvable differential inclusion, and then we look for

solutions of (1.1) among those of the inclusion. This proccess of “passing from

the equation to the inclusion and back again” has a twofold interest: first, it

leads to new existence results for (1.1), and, second, it provides us with a bridge

between two different approaches to discontinuous differential equations.

To start introducing some necessary preliminaries, let us say that the main

idea consists in replacing f by a suitable multivalued mapping F : I × Rm →
P(Rm) and then searching for solutions of the initial value problem

x′(t) ∈ F (t, x(t)) for a.a. t ∈ I, x(t0) = x0. (1.2)

One can find in the literature different F ’s, which lead to different notions

of a solution, see [1, 9, 10, 18, 21] and references therein. We shall consider

Krasovskij solutions, which are absolutely continuous functions that satisfy (1.2)

with

F (t, x) :=
⋂
ε>0

cof(t, x + ε B), (t, x) ∈ I × Rm. (1.3)

Here co means closed convex hull, B = {y ∈ Rm : ‖y‖ ≤ 1} is the unit closed

ball centered at the origin, and x + εB is the closed ball of radius ε > 0 and

center x ∈ Rm. Unless stated otherwise, we shall use the maximum norm

‖x‖ = max {|xi| : 1 ≤ i ≤ m} , for each x = (x1, x2, . . . , xm) ∈ Rm.

We shall denote by K the set of all Krasovskij solutions of (1.1).
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Plainly, the definition of F guarantees that f(t, x) ∈ F (t, x) for all (t, x), and

therefore C ⊂ K. Now we reduce our problem to obtain conditions on f which

imply that K is nonempty and, on the other hand, that K ⊂ C. It is well-known

that continuity with respect to x is enough, but we are precisely interested in

discontinuous differential equations and thus we are forced to improve that.

In order to achieve our goal, we shall introduce conditions on the sets where

f is discontinuous so that Krasovskij solutions either become Carathéodory

solutions whenever their graphs lie on those sets, or they are simply pushed away

from them. There exist previous mathematical formulations of this idea, as the

reader can see in [18]. Here we use an “inverse viability” approach. The high

development reached by viability theory makes it easy to find in the literature

very general conditions which imply that the graphs of all solutions of a given

differential inclusion are forced to lie on a certain set. We are interested in the

opposite type of results, but the necessary (and sharp!) theoretical background

already exists.

The main elements in viability theory are contingent cones and derivatives:

for a given set A ⊂ Rm, the Bouligand’s contingent cone at x ∈ A is defined as

TA(x) :=
⋂
ε>0

⋂
α>0

⋃

0<h<α

(
1
h

(A− x) + εB

)
.

An analytical description of Bouligand’s contingent cone is established in the

following proposition.

Proposition 1.1 [1, proposition 2, page 177] v ∈ TA(x) if and only if there

exists sequences of strictly positive numbers hn and of elements un ∈ Rm satis-

fying

i) lim
n→∞

un = v, ii) lim
n→∞

hn = 0, iii) ∀n ≥ 0, x + hnun ∈ A.

For an interval I ⊂ R and a set valued map K : I → P(Rm) we recall the notion

of graph of K, which is the set graph(K) := {(t, x) ∈ I × Rm : x ∈ K(t)}. In

case K is strict, i.e., K(t) 6= ∅ for each t ∈ I, the contingent derivative of K

at a point (t, x) ∈ graph(K) is defined as the mapping DK(t, x) : R→ P(Rm)
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whose graph is the contingent cone Tgraph(K)(t, x), i.e.,

v0 ∈ DK(t, x)(t0) ⇔ (t0, v0) ∈ Tgraph(K)(t, x).

Just for notational purposes, if K(t) = ∅ then we shall write DK(t, x)(t0) = ∅
for all t0 ∈ R.

In case K is single- and scalar-valued we have the following results:

Lemma 1.2 Let J ⊂ R be an interval and let γ : J → R. Then the mapping

K(t) := {γ(t)}, t ∈ J , satisfies

(a) DK(t, γ(t))(1) lies between D+γ(t) and D+γ(t) for all t ∈ J , where D+γ

and D+γ denote the lower-right and the upper-right Dini derivatives, re-

spectively.

In particular, if γ is right-differentiable at some t ∈ J then we have that

DK(t, γ(t))(1) = {γ′+(t)}.

(b) −DK(t, γ(t))(−1) lies between D−γ(t) and D−γ(t) for all t ∈ J , where

D−γ and D−γ denote the lower-left and the upper-left Dini derivatives,

respectively.

In particular, if γ is left-differentiable at some t ∈ J then we have that

−DK(t, γ(t))(−1) = {γ′−(t)}.

Proof. By definition, ξ ∈ DK(t, γ(t))(1) if and only if (1, ξ) ∈ Tgraph(K)
(t, γ(t)).

Then, by proposition 1.1 we have that ξ ∈ DK(t, γ(t))(1) if and only if there ex-

ist a sequence of strictly positive numbers {hn}n and another sequence {un}n =

{(tn, wn)}n ⊂ R2 such that {hn}n → 0, {un}n → (1, ξ) and (t, γ(t)) + hnun ∈
graph(K) for all n ∈ N. Therefore, for each n we have (t, γ(t)) + hnun =

(t + hn tn, γ(t + hn tn)) and then (a) follows from the expression

ξ = lim
n→∞

wn = lim
n→∞

wnt−1
n = lim

n→∞
γ(t + hn tn)− γ(t)

hn tn
.

The proof of (b) is similar. ut
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Notice that γ needs not be continuous in lemma 1.2.

This paper is organized as follows: in section 2 we study nonautonomous

equations and systems; in section 3 we prove an alternative result concerning

the scalar case. Examples and comparison with the literature are provided

throughout the paper.

2 Existence results for systems

Let us consider problem (1.1) and assume that for f : I×Rm → Rm there exists

a null-measure set N ⊂ I such that the following conditions hold:

(i) There exists ψ ∈ L1(I) such that for all t ∈ I \N and all x ∈ Rm we have

‖f(t, x)‖ ≤ ψ(t)(1 + ‖x‖).

(ii) For all x ∈ Rm, f(·, x) is measurable.

We say that a (Carathéodory or Krasovskij) solution x∗ of (1.1) is the maxi-

mal solution if x∗(t) ≥ x(t) for all t ∈ I and for any other solution x (here, “≥”

must be understood componentwise). The minimal solution is defined analo-

gously; when both the minimal and the maximal solutions exist, we call them

the extremal solutions.

We have the following result about Krasovskij solutions. By AC(I) we de-

note the set of all real-valued functions that are absolutely continuous on I.

Proposition 2.1 If f satisfies (i) and (ii), then K is a nonempty, compact,

and connected subset of C(I,Rm).

Moreover, in the scalar case (m = 1) we have

1. K has pointwise maximum, x∗, and minimum, x∗, which are the extremal

solutions of (1.2). Moreover for each t ∈ I we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) ∈ F (s, v(s))− R+ a.e., v(t0) ≤ x0},(2.4)

x∗(t) = min{v(t) : v ∈ AC(I), v′(s) ∈ F (s, v(s)) + R+ a.e., v(t0) ≥ x0}.(2.5)

2. K is a funnel, i.e., for all t̄ ∈ I and c ∈ [x∗(t̄), x∗(t̄)] there exists x ∈ K such

that x(t̄) = c.
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Proof. It is clear that F (t, x), defined in (1.3), is closed, convex, and nonempty

for all (t, x) ∈ I ×Rm. Moreover for each t ∈ I, F (t, ·) is upper semicontinuous

and, by (i), we have for all t ∈ I \N that

sup{‖y‖ : y ∈ F (t, x)} ≤ ψ(t)(1 + ‖x‖) for all x ∈ Rm.

Finally, condition (ii) implies that f(·, x) is a measurable selection of F (·, x) for

each x ∈ Rm, and then it follows from [9, corollary 5.1 and theorem 7.2] that K
is a nonempty compact and connected subset of C(I,Rm).

In the scalar case (m = 1), the existence of extremal solutions follows from

a similar argument to that in the proof of [8, theorem 3].

We are going to prove (2.5) using a slight modification of that of [8, theorem

4] (such a modification is necessary because in our case F (·, x) needs not be

measurable, as we shall show in section 3.1). Let v ∈ AC(I) be such that

v′(t) ∈ F (t, v(t)) + R+ for a.a. t ∈ I, v(t0) ≥ x0.

On the exceptional null set we (re)define v′(t) as any element of F (t, v(t)).

Since F (t, ·) is usc and F (·, x) has a measurable selection, it follows from [9,

proposition 3.5] that there exists a measurable selection w : I → R of F (·, v(·)).
Then we have that

v′(t) ∈ F (t, v(t)) + y(t) for all t ∈ I,

where y(t) := max{0, v′(t)− w(t)}, t ∈ I (note that y is measurable).

For each n ≥ 1 let λn : I×R→ [0, 1] be continuous and such that λn(t, x) = 1

for x ≤ v(t) and λn(t, x) = 0 for x ≥ v(t) + 1
n . Consider for all (t, x) ∈ I × R

Fn(t, x) = λn(t, x)F (t,min{x, v(t)}) + (1− λn(t, x))(v′(t)− y(t)).

For each x ∈ R the mapping λn(·, x)(f(·, x)χA(·)+w(·)χB(·))+(1−λn(·, x))(v′(·)−
y(·)) is a measurable selection of Fn(·, x), where A = {t ∈ I : x ≤ v(t)}
and B = {t ∈ I : x > v(t)}. Whence, since Fn(t, ·) is usc and satisfies

sup{|z| : z ∈ Fn(t, x)} ≤ ψ(t)(1 + |v(t)|)(1 + |x|) a.e., the problem

z′n(t) ∈ Fn(t, zn(t)) for a.a. t ∈ I, zn(t0) = x0,
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has a solution zn and we have that zn ≤ v+ 1
n on I. By a standard argument we

deduce that a subsequence of {zn}n converges uniformly to a solution of (1.2)

z ≤ v. Then, since x∗ ≤ z ≤ v, we obtain (2.5). The proof of (2.4) is similar.

Finally, let t̄ ∈ I be fixed. Since K is connected and the function πt̄ : K → R

defined as πt̄(x) = x(t̄) is continuous, we have that πt̄(K) is also connected.

Then for all c ∈ [x∗(t̄), x∗(t̄)] = [πt̄(x∗), πt̄(x∗)] there exists x ∈ K such that

πt̄(x) = x(t̄) = c. ut

Following the sketch that we outlined in the introduction, we now have to

reenforce the assumptions required in proposition 2.1 in order to obtain also

that K ⊂ C. A first result in this direction is the following theorem:

Theorem 2.2 Assume that for a null-measure set N ⊂ I, the mapping f :

I ×Rm → Rm satisfies (i), (ii), and for each t ∈ I \N , f(t, ·) is continuous on

Rm \N1 × · · · ×Nm, where Ni ⊂ R is a null-measure set for i = 1, . . . , m.

If, moreover, for each t ∈ I \N and each x ∈ N1 × · · · ×Nm we have that

∩ε>0cof(t, x + εB) ∩ {0} ⊂ {f(t, x)}, (2.6)

then C = K for each x0 ∈ Rm (and thus C enjoys all the properties established

for K in proposition 2.1).

Proof. For x ∈ K we define A := {t ∈ I : x(t) ∈ N1 × · · · × Nm}. If we put

x(t) = (x1(t), x2(t), . . . , xm(t)), then A = ∩m
i=1Ai where Ai := {t ∈ I : xi(t) ∈

Ni}. By [19, theorem 38.2] we have that x′i(t) = 0 for a.a. t ∈ Ai and thus

x′(t) = 0 for a.a. t ∈ A. Hence 0 ∈ F (t, x(t)) for a.a. t ∈ A. Our hypothesis

implies then that f(t, x(t)) = 0 for a.a. t ∈ A and consequently x′(t) = f(t, x(t))

for a.a. t ∈ A. Since F (t, x(t)) = {f(t, x(t))} for all t ∈ I \ (A∪N) we conclude

that x′(t) = f(t, x(t)) for a.a. t ∈ I and therefore x ∈ C. ut

Remarks to theorem 2.2. 1. When specialized to the autonomous case it can

be proven exactly as in [21, theorem 1] that condition “K ⊂ C for all x0 ∈ Rm”

implies (2.6). Doing so we would have a generalization of [18, theorems 2.2 and
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3.11]. Remember, however, that in the scalar autonomous case necessary and

sufficient conditions for the existence of Carathéodory solutions are known (see

[5]).

2. Theorem 2.2 also improves the results in [18] for nonautonomous problems.

3. We emphasize that the assumptions do not imply that the set of discontinuity

points of f(t, ·) is equal to N1 × · · · ×Nm, but it only needs to be contained in

N1×· · ·×Nm. Therefore the set of discontinuity points of f(t, ·) is not explicitly

prescribed, and thus such set needs not be the same for all values of t. However

such a simple case as that of a nonlinear f which is discontinuous with respect

to x exactly at the points of the line x1 = · · · = xm = t falls outside the scope of

theorem 2.2. This is a severe limitation that we avoid in our next result (which

the reader should compare with example 4.1 in [18], that shows that existence

may fail if discontinuities depend on t).

To deal with more complicated types of time-dependent discontinuity sets,

we shall impose conditions (i), (ii), and

(iii) For all t ∈ I \ N , f(t, ·) is continuous in Rm \ K(t), where K(t) =

∪∞n=1Kn(t), and for each n ∈ N and x ∈ Kn(t) we have

∩ε>0cof(t, x + εB) ∩DKn(t, x)(1) ⊂ {f(t, x)}. (2.7)

Next we show how condition (iii) implies that K ⊂ C.

Lemma 2.3 Let f : I×Rm → Rm satisfy (i) and (ii) for some null-measure set

N ⊂ I. The following results hold:

(a) If there exist multivalued mappings Kn : I → P(Rm), n ∈ N, such that

for all t ∈ I \N , all n ∈ N and all x ∈ Kn(t) we have

∩ε>0cof(t, x + εB) ∩DKn(t, x)(1) ⊂ {f(t, x)}, (2.8)

then every x ∈ K satisfies

x′(t) = f(t, x(t)) a.e. in {t ∈ I : x(t) ∈ ∪n∈NKn(t)}.

(b) If condition (iii) is satisfied, then K ⊂ C.
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Proof. Let x ∈ K and put

Ix = {t ∈ [t0, t0 + L) \N : x′(t) exists and x′(t) ∈ F (t, x(t))} ,

A = {t ∈ Ix : x(t) ∈ ∪n∈NKn(t)} , An = {t ∈ Ix : x(t) ∈ Kn(t)} ,

Bn = {t ∈ An : (t, t + εt) ⊂ I and (t, t + εt) ∩An = ∅ for some εt > 0} .

To establish part (a) we have to show that x′(t) = f(t, x(t)) for a.a. t ∈ A.

Since A =
⋃

n∈NAn, it suffices to prove that x′(t) = f(t, x(t)) for a.a. t ∈ An

and all n ∈ N. This will be proven in the next two steps:

Step 1 – For each t ∈ An \Bn we have that x′(t) = f(t, x(t)).

For t1 ∈ An \ Bn there exists a sequence of strictly positive numbers {hi}i

which converges to 0 and is such that t1 < t1 + hi < t1 + L and (t1 + hi, x(t1 +

hi)) ∈ graph(Kn). Now we define ui = (1, h−1
i (x(t1 + hi)− x(t1))) ∈ Rm+1 for

i ∈ N, and we have

1) lim
i→∞

ui = (1, x′(t1)), 2) lim
i→∞

hi = 0,

3) ∀i ∈ N, (t1, x(t1)) + hi ui ∈ graph(Kn),

which, by proposition 1.1, implies that (1, x′(t1)) ∈ Tgraph(Kn)(t1, x(t1)), or,

equivalently, that x′(t1) ∈ DKn(t1, x(t1))(1). Moreover x′(t1) ∈ F (t1, x(t1)),

and then (2.8) implies that x′(t1) = f(t1, x(t1)).

Step 2 – Bn is denumerable for each n ∈ N.

Take, for each t ∈ Bn, the number εt > 0 associated to it by the definition

of Bn. Since the intervals (t, t + εt), t ∈ An, do not overlap, the sum of each

denumerable subfamily of {εt : t ∈ Bn} is finite and bounded above by L > 0.

Hence the sum
∑

t∈Bn
εt is finite and therefore Bn can be, at most, denumerable.

To prove (b) we have to show that for a.a. t ∈ Ix we have x′(t) = f(t, x(t)).

This follows directly from part (a) and the fact that F (t, x(t)) = {f(t, x(t))}
whenever t ∈ Ix \A, as f(t, ·) is continuous at x(t) for t ∈ Ix \A. ut
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Now we establish this section’s main result, which follows immediately from

lemma 2.3 and proposition 2.1.

Theorem 2.4 If f satisfies (i), (ii), and (iii), then C is a nonempty, compact,

and connected subset of C(I,Rm).

Moreover, in the scalar case (m = 1), we have

1. C has pointwise maximum, x∗, and minimum, x∗, which are the extremal

solutions of (1.1). Furthermore for each t ∈ I we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) ≤ f(s, v(s)) a.e., v(t0) ≤ x0}, (2.9)

x∗(t) = min{v(t) : v ∈ AC(I), v′(s) ≥ f(s, v(s)) a.e., v(t0) ≥ x0}.(2.10)

2. C is a funnel, i.e., for all t̄ ∈ I and c ∈ [x∗(t̄), x∗(t̄)] there exists x ∈ C such

that x(t̄) = c.

Example 2.5 Consider the problem x′(t) = f(t, x(t)) a.e. in [0, 1], x(0) = 0,

where f : [0, 1]× R→ R is a changing-sign nonlinearity given by

f(t, x) =
1
2
, if x ≤ −t,

=
arctan (n− 3)

π
, if −t + 1

n+1 < x ≤ −t + 1
n , n ∈ N

= −1
2
, if −t + 1 < x.

It is obvious that f satisfies conditions (i) and (ii). Moreover, we have that

f(t, ·) is continuous in R \K(t), where K(t) =
⋃

Kn(t) and Kn(t) = {−t + 1
n}

for all t ∈ [0, 1]. Then DKn(t, x)(1) = −1 for all (t, x) ∈ graph(Kn) and

all n ∈ N. On the other hand f(t, x) ≥ − 1
2 for all (t, x) ∈ [0, 1] × R and

therefore ∩ε>0cof(t, x + εB) ∩ DKn(t, x)(1) = ∅, which implies that f also

satisfies (iii). Thus, theorem 2.4 ensures the existence of the extremal solutions

for this problem. Furthermore, a standard uniqueness result (see [13]) implies

that there exists a unique solution because f(t, ·) is nonincreasing.

We remark that the results established in [6, 20, 14] do not apply in this

example.
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Remarks to theorem 2.4

1. We cannot expect to have extremal solutions in the conditions of theorem

2.4 when m ≥ 2. In fact the continuous system




x′1 = t3 − x2, t ∈ [0, 1], x1(0) = 0,

x′2 = 3x
2/3
2 , t ∈ [0, 1], x2(0) = 0,

does not have neither a maximal solution nor a minimal one in the sense de-

fined at the beginning of this section. Adding a standard quasimonotonicity

assumption over f and reenforcing the measurability conditions as in [14, theo-

rem 5.1] is probably the first step towards an extremality result, which we hope

to consider elsewhere.

2. We can improve theorem 2.4 weakening hypothesis (iii) until

˜(iii) For all t ∈ I \ N , f(t, ·) is continuous in Rm \ K(t), where K(t) =

∪∞n=1Kn(t), and for each n ∈ N and x ∈ Kn(t) we have

∩ε>0cof(t, x + εB) ∩DKn(t, x)(1) ∩ −DKn(t, x)(−1) ⊂ {f(t, x)},

but we have preferred to use (iii) for simplicity.

Using the standard change of variables y(t) = x(2t0 − t), it is easy to check

that (i), (ii), and ˜(iii), with the obvious modifications, guarantee an analogous

to theorem 2.4 for solutions defined on [t0 − L, t0]. Since (iii) implies ˜(iii),

theorem 2.4 holds valid for the interval [t0 − L, t0 + L].

We also note that in case Kn is single and scalar-valued then ˜(iii) is trivially

fulfilled at those points t where the left and right derivatives exist and they are

different (see lemma 1.2).

3. Carathéodory’s existence result is covered by theorem 2.4 with K(t) = ∅
for all t ∈ I. Even Goodman’s characterization of the maximal and minimal

solution [11] as the greatest subfunction and the least superfunction is also

included in theorem 2.4.

4. The existence result is not guaranteed, in general, in case the condition

“F (t, x) ∩ DKn(t, x)(1) ⊂ {f(t, x)}” fails just for a single x and all t in a

subinterval of I. The following standard example shows it.
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Example 2.6 The problem x′(t) = f(t, x(t)), x(0) = 0, for

f(t, x) = 1, if x < 0,

= −1, if x ≥ 0,

has no solution defined on, say, I = [0, 1]. Here K(t) = {0} for all t ∈ I and,

thus, DK(t, 0)(1) = {0} for all t.

On the other hand F (t, 0) := ∩ε>0cof(t, 0 + ε B) = [−1, 1] and then

F (t, 0) ∩DK(t, 0)(1) = {0} 6⊂ {f(t, 0)}.

5. Condition “F (t, x)∩DKn(t, x)(1) = ∅ for all n ∈ N”, which implies condition

(2.7), is a type of transversality (or in-viability) condition, and it prevents the

solutions from touching “tangentially” the discontinuity set graph(Kn). The

geometrical idea behind this condition is not new at all, and can be traced

back to Filippov’s discontinuity surfaces described in [10]. Similar conditions

for scalar problems were introduced in [20].

6. Most existence results for inclusions of the type of (1.2) require the multival-

ued mapping F (·, x) be measurable for each x, i.e., that {t ∈ I : F (t, x)∩A 6= ∅}
be Lebesgue-measurable for each open A ⊂ Rm (see [16], or definition 3.1

in [9]). It seems that Davy in [7] was the first author who realised that in

many situations the existence of a measurable selection of F (·, x) is enough.

This is exploited in, for instance, the proofs of corollary 5.1 and theorem 7.2

in [9], which play a central role in the proof of our proposition 2.1. Davy’s

observation appears to be crucial in this paper, as the multivalued mapping

F (t, x) := ∩ε>0cof(t, x + εB) may fail to be measurable in t, even though f

satisfies (i), (ii), and f(t, ·) is continuous everywhere except, at most, on a

countable and nowhere dense subset. This is the case in the following example:

Example 2.7 Let S ⊂ (0, 1] be a nonmeasurable set and define the function

f : [0, 1]× R→ R as

f(t, x) = 1, if t = s and x = s/n for some s ∈ S and some n ∈ N,

= 0, otherwise.
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Note that for each x ∈ R there is, at most, a finite number of points s ∈ S
and a finite number of positive integers n such that x = s/n. Therefore the

function t 7→ f(t, x) is continuous everywhere except, at most, on a finite set of

t’s. Hence f(·, x) is measurable for each x ∈ R.

On the other hand, for each t ∈ [0, 1] the function f(t, ·) is continuous ev-

erywhere except, at most, on the points of the set K(t) = {t/n : n ∈ N} .

It is easy to see that F (t, 0) = {0} if t 6∈ S and F (t, 0) = [0, 1] if t ∈ S; hence

F (·, 0) is not measurable, since, for instance, {t : F (t, 0) ∩ (1/2, 2) 6= ∅} = S.

3 Another existence result for the scalar case

It is proven in [14] that problem (1.1) with m = 1 has extremal solutions

provided that f : I × R→ R satisfies (ii) and

(iii∗) for all t ∈ I \N and all x ∈ R we have

lim sup
y→x−

f(t, y) ≤ f(t, x) ≤ lim inf
y→x+

f(t, y),

together with a boundedness condition similar to (i).

In this part we shall focus on right hand sides f which satisfy (iii∗) outside

a certain set of the type of graph(K) in condition (iii), but first we shall prove

some technical results on superpositional measurability that will be needed to

establish our existence results.

3.1 Conditions for superpositional measurability

It is not clear whether the technique employed in [14] may be adapted to this new

setting, and there is a main difficulty that we have to overcome in a different

way: compositions f(·, x(·)) may be nonmeasurable, even for x ∈ C(I) (see

[14]). We shall use an obvious way to wipe this problem out, which consists in

explicitly requiring something like

(ii∗) f(·, x(·)) is measurable for each x ∈ C(I).
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Although (ii∗) is commonplace in the current literature of discontinuous

differential equations, see [2, 3, 4], it is not a completely satisfactory assumption:

first, despite everyone agrees that measurability is a quite weak condition, it is

easy to find elementary examples of solvable Cauchy problems satisfying (ii),

(iii∗), but not (ii∗) (see [14]); on the other hand, (ii∗) is stronger, and hence

harder to check, than the classical (ii). Thus we consider that it is interesting

to investigate which types of f ’s satisfying (ii) and (iii∗) satisfy (ii∗) as well.

We shall also show that, loosely speaking, the gap between those f ’s fulfilling

(ii) and (iii∗) and the ones satisfying (ii∗) and (iii∗) is occupied by functions

which are discontinuous with respect to x on curves of the (t, x) plane such that

the restriction of f to those curves is not a measurable function.

First, we need the following lemma, which is a slight extension of lemma 2.1

in [14] for real-valued f ’s.

Lemma 3.1 Let N ⊂ I be a null-measure set and let f : I×R→ R be such that

f(·, q) is measurable for each q ∈ Q. Then we have

(a) If for all t ∈ I \N and all x ∈ R we have

min

{
lim sup
y→x−

f(t, y), lim sup
y→x+

f(t, y)

}
≤ f(t, x),

then the mapping t ∈ I 7→ inf{f(t, y) : x1(t) < y < x2(t)} is measurable

for each pair x1, x2 ∈ C(I) such that x1(t) < x2(t) for all t ∈ I.

(b) If for all t ∈ I \N and all x ∈ R we have

max
{

lim inf
y→x−

f(t, y), lim inf
y→x+

f(t, y)
}
≥ f(t, x),

then the mapping t ∈ I 7→ sup{f(t, y) : x1(t) < y < x2(t)} is measurable

for each pair x1, x2 ∈ C(I) such that x1(t) < x2(t) for all t ∈ I.

Proof. We shall only prove part (a), since (b) is similar.

We denote by S the following set of step functions: v : [t0, t0 + L) −→ R

belongs to S if v assumes only rational values, x1(t) < v(t) < x2(t) on [t0, t0+L)
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and there exists j ∈ N such that v is constant on every interval
[
t0, t0 +

L

j

)
,

[
t0 +

L

j
, t0 +

2L

j

)
, . . . ,

[
t0 +

(j − 1)L
j

, t0 + L

)
.

As x1, x2 are continuous on [t0, t0 +L] then S is not empty. Note, moreover,

that for each q ∈ (x1(t), x2(t)) ∩Q there exists v ∈ S such that v(t) = q.

Since S is a countable family and any composition f(·, v(·)) with v ∈ S is

measurable on [t0, t0 + L), it suffices to prove that

ι(t) := inf
y∈(x1(t),x2(t))

f(t, y) = inf
v∈S

f(t, v(t)) =: ι0(t)

a.e. on [t0, t0 + L) to deduce that ι is measurable.

Clearly, ι(t) ≤ ι0(t) on [t0, t0 + L). To prove that ι(t) ≥ ι0(t) on [t0, t0 +

L)\N , we fix an arbitrary t ∈ [t0, t0 + L)\N and we take a sequence {yn}n ⊂
(x1(t), x2(t)) such that

lim
n→∞

f(t, yn) = ι(t). (3.11)

Our assumptions guarantee that for each n we have

lim sup
y→y−n

f(t, y) ≤ f(t, yn) or lim sup
y→y+

n

f(t, y) ≤ f(t, yn),

thus there exists qn ∈ (x1(t), yn)∩Q (or qn ∈ (yn, x2(t))∩Q) such that f(t, qn) ≤
f(t, yn) + 1/n. Since there exists vn ∈ S such that vn(t) = qn we have, for all

n, that

ι0(t) = inf
v∈S

f(t, v(t)) ≤ f(t, vn(t)) ≤ f(t, yn) +
1
n

and, using (3.11), we conclude that

ι0(t) ≤ lim
n→∞

[
f(t, yn) +

1
n

]
= ι(t).

ut

It is known that a function g : R→ R such that

lim sup
y→x−

g(y) ≤ g(x) ≤ lim inf
y→x+

g(y) for all x ∈ R,

16



can have at most a countable set of discontinuity points (consequence of Young’s

theorem [17, page 287]). Therefore, for each mapping f : I × R→ R for which

there exists a null-measure set N ⊂ I such that for all t ∈ I \N we have

lim sup
y→x−

f(t, y) ≤ f(t, x) ≤ lim inf
y→x+

f(t, y) for all x ∈ R,

there must exist a countable set of mappings jn : In ⊂ I → R, n ∈ N, such

that the set of discontinuity points of f(t, ·) is exactly ∪n/t∈In
{jn(t)} for each

t ∈ I \N .

Bearing these considerations in mind, the assumptions required in the fol-

lowing proposition are natural.

Proposition 3.2 Let N ⊂ I be a null-measure set and let f : I × R → R be

such that

(1) f(·, q) is measurable for each q ∈ Q.

(2) Either for all t ∈ I \N and all x ∈ R we have

min

{
lim sup
y→x−

f(t, y), lim sup
y→x+

f(t, y)

}
≤ f(t, x),

or for all t ∈ I \N and all x ∈ R we have

f(t, x) ≤ max
{

lim inf
y→x−

f(t, y), lim inf
y→x+

f(t, y)
}

.

(3) There exist mappings jn : In ⊂ I → R, n ∈ N, such that for each t ∈ I \N

the set of discontinuity points of f(t, ·) is exactly ∪n/t∈In
{jn(t)}; moreover,

the mappings jn and f(·, jn(·)) are measurable.

Then the mapping t ∈ I 7→ f(t, x(t)) is measurable for each x ∈ C(I).

Proof. Assume that the first alternative in condition (2) holds, let x ∈ C(I) be

fixed and let J = {t ∈ I \N : x(t) = jn(t) for some n ∈ N} and Jn = {t ∈ J :

x(t) = jn(t)}, n ∈ N. For all t ∈ I we have that

f(t, x(t))χJ(t) =
∞∑

n=1

f(t, jn(t))χJ̃n
(t),
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where J̃1 = J1, J̃n = Jn \ (J1 ∪ J2 ∪ . . . ∪ Jn−1), n ≥ 2, and χA stands for the

characteristic function of the set A. Therefore f(·, x(·))χJ is measurable.

Now we consider (I\N)\J = {t ∈ I\N : f(t, ·) is continuous at x(t)} =: Ic,

and then for all t ∈ I \N

f(t, x(t)) = lim inf
y→(x(t))+

f(t, y)χIc
(t) + f(t, x(t))χJ(t)

= lim
n→∞

[
inf

y∈(x(t),x(t)+1/n)
f(t, y)χIc(t)

]
+ f(t, x(t))χJ(t),

which implies that f(·, x(·)) is measurable by virtue of lemma 3.1.

To establish the result using the second alternative in (2) it suffices to replace

inf by sup to express f(·, x(·)) as a limit of a sequence of measurable functions.

ut

3.2 Existence results

It is the aim of this part to prove an analogous to theorem 2.4 for m = 1 in order

to cover the case of nonlinear f : I ×R→ R which for a given null-measure set

N ⊂ I satisfies (i) and

(ii′) f(·, v(·)) is measurable on I whenever v ∈ AC(I);

(iii′) For all t ∈ I \N we have

lim sup
y→x−

f(t, y) ≤ f(t, x) ≤ lim inf
y→x+

f(t, y), for all x ∈ R \K(t),

lim inf
y→x−

f(t, y) ≥ f(t, x) ≥ lim sup
y→x+

f(t, y), for all x ∈ K(t),

where K(t) = ∪∞n=1Kn(t), and for each n ∈ N and x ∈ Kn(t) we have

∩ε>0cof(t, x + εB) ∩DKn(t, x)(1) ⊂ {f(t, x)}.

Remark. In this case there is no hope to have K = C since C needs not be

closed nor connected in C(I,Rm), even though K(t) = ∅ for all t ∈ I. To see
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this it suffices to consider the problem x′ = f(t, x) for a.a. t ∈ [0, 1], x(0) = 0,

for
f(t, x) = 2, if x ≥ t,

= 1− 1/n, if (1− 1/n)t ≤ x < [1− 1/(n + 1)]t,
= 0, if x < 0.

To work with this new type of nonlinearity we follow lemma 1 in [3] and we

define h : I × R2 → R as follows:

h(t, α, β) = sup{f(t, δ) : α ≤ δ ≤ β} if α ≤ β,

= inf{f(t, δ) : β ≤ δ ≤ α} if α ≥ β. (3.12)

Furthermore, we shall need the following multivalued extension of h: we

define H : I × R2 → P(R) as

H(t, α, β) = ∩ε>0co h(t, α + εB, β). (3.13)

The following statement and its proof are nothing but immediate adaptations

of those of [3, lemma 1]. However some minor differences arise due to our weaker

assumptions.

Lemma 3.3 Assume (i), (ii′) and (iii′). Then the function h defined in (3.12)

satisfies

(a) h(t, x, x) = f(t, x);

(b) for almost all t and each x, h(t, x, ·) is nondecreasing;

(c) for each absolutely continuous v : I → R the function

(t, x) 7−→ h(t, x, v(t))

satisfies (i) and (ii). Moreover, for each t ∈ I\N , h(t, ·, v(t)) is continuous

on R \K(t).

Proof. Parts (a) and (b) are immediate. To prove that for a.a. t ∈ I, h(t, ·, v(t))

is continuous on R \K(t), it suffices to note that h(t, ·, β) is nonincreasing for

all t ∈ I \N and all β and to show that

lim
y→α−

h(t, y, β) ≤ h(t, α, β) ≤ lim
y→α+

h(t, y, β) for each α ∈ R \K(t). (3.14)

19



To see that, let t ∈ I \N be fixed and assume that α ≤ β is such that α 6∈ K(t).

Then we have

lim
y→α−

h(t, y, β) = lim
y→α−

sup{f(t, δ) : y ≤ δ ≤ β}

= lim
y→α−

sup{sup{f(t, δ) : y ≤ δ < α}, sup{f(t, δ) : α ≤ δ ≤ β}}

(by condition (iii′), lim supy→α− f(t, y) ≤ f(t, α))

≤ sup{f(t, α), sup{f(t, δ) : α ≤ δ ≤ β}} = h(t, α, β),

and if α > β, α 6∈ K(t), we have

lim
y→α−

h(t, y, β) = lim
y→α−

inf{f(t, δ) : β ≤ δ ≤ y}

= inf{f(t, δ) : β ≤ δ < α}
(by condition (iii′), lim infy→α− f(t, y) ≤ f(t, α))

= inf{f(t, δ) : β ≤ δ ≤ α} = h(t, α, β).

We note that the previous limits exist because the mappings involved are

monotone. The proof of the other half of (3.14) is similar.

Now we have to prove that h(·, x, v(·)) is measurable for each v ∈ AC(I) and

each x ∈ R, but this follows directly from the assumptions, lemma 3.1, and

h(t, x, v(t)) = max{f(t, x), f(t, v(t)), sup{f(t, δ) : x < δ < v(t)}}χI1(t)

+ min{f(t, x), f(t, v(t)), inf{f(t, δ) : v(t) < δ < x}}χI2(t)

+ f(t, x)χI3(t), t ∈ I,

where I1 = {t ∈ I : x < v(t)}, I2 = {t ∈ I : x > v(t)} and I3 = I \ (I1 ∪ I2).

Finally the mapping (t, x) 7→ h(t, x, v(t)) satisfies (i) with ψ(t) replaced by,

for instance, ψ̄(t) = ψ(t)(1 + |v(t)|). ut

Now we can proceed to establish some properties of H.

Lemma 3.4 Assume that for a null-measure set N ⊂ I, f : I ×R→ R satisfies

(i), (ii′), and (iii′), and consider the mappings h and H defined in (3.12) and

(3.13), respectively. Then for each t ∈ I \N and all x ∈ R we have
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(a) H(t, x, x) ⊂ F (t, x) := ∩ε>0co f(t, x + εB);

(b) H(t, x, ·) is nondecreasing in the following sense:

y1 ≤ y2 ⇒





H(t, x, y1) ⊂ H(t, x, y2)− R+

and
H(t, x, y2) ⊂ H(t, x, y1) + R+.

Proof. Note that for each (t, x) ∈ I × R we have

F (t, x) =
[
min{f(t, x), lim inf

y→x
f(t, y)}, max{f(t, x), lim sup

y→x
f(t, y)}

]
,

and for each ε > 0

co h(t, x + εB, x) = [ inf{h(t, y, x) : x− ε ≤ y ≤ x + ε},
sup{h(t, y, x) : x− ε ≤ y ≤ x + ε}]. (3.15)

Now we take into account that

inf{h(t, y, x) : x− ε ≤ y ≤ x + ε} = min{h(t, x, x),

inf{h(t, y, x) : x− ε ≤ y < x},
inf{h(t, y, x) : x < y ≤ x + ε}}

and we compute

inf{h(t, y, x) : x− ε ≤ y < x} = inf{sup{f(t, δ) : y ≤ δ ≤ x} : x− ε ≤ y < x}
= inf{max{f(t, x), sup{f(t, δ) : y ≤ δ < x}} : x− ε ≤ y < x}
≥ inf{sup{f(t, δ) : y ≤ δ < x} : x− ε ≤ y < x}
= lim sup

y→x−
f(t, y) ≥ lim inf

y→x−
f(t, y),

and

inf{h(t, y, x) : x < y ≤ x + ε} = inf{inf{f(t, δ) : x ≤ δ ≤ y} : x < y ≤ x + ε}
= inf{f(t, δ) : x ≤ δ ≤ x + ε}
= min{f(t, x), inf{f(t, δ) : x < δ ≤ x + ε}}.
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Symmetric arguments with the right end of the interval (3.15) show that for

each ε > 0 we have

co h(t, x + εB, x) ⊂ [min{f(t, x), lim inf
y→x−

f(t, y), inf{f(t, y) : x < y ≤ x + ε}},

max{f(t, x), lim sup
y→x+

f(t, y), sup{f(t, y) : x− ε ≤ y < x}}],

and, since these intervals decrease with ε, we can go to the limit when ε tends

to 0+ to obtain the desired estimate

H(t, x, x) = ∩ε>0co h(t, x + εB, x)

⊂ [min{f(t, x), lim inf
y→x−

f(t, y), lim inf
y→x+

f(t, y)},

max{f(t, x), lim sup
y→x+

f(t, y), lim sup
y→x−

f(t, y)}] = F (t, x).

To establish part (b) it suffices to show that both endpoints of the interval

H(t, x, y1) are smaller than the corresponding ones of H(t, x, y2) when y1 ≤ y2.

We shall only prove the result for the left extremes as the arguments to prove

it for the right ones are similar. Since h(t, x, ·) is nondecreasing, for each ε > 0

we have

inf coh(t, x + εB, y1) = inf{h(t, y, y1) : x− ε ≤ y ≤ x + ε}
≤ inf{h(t, y, y2) : x− ε ≤ y ≤ x + ε}
= inf coh(t, x + εB, y2),

and then inf H(t, x, y1) = sup{inf coh(t, x + εB, y1) : ε > 0} ≤ inf H(t, x, y2). ut

Finally, we establish this section’s main result. Its proof is based on the the-

ory of generalized iterative techniques for finding fixed points of discontinuous

operators, described by Heikkilä and Lakshmikantham in [15]. It will be divided

in several steps for the sake of clearness.

Theorem 3.5 If conditions (i), (ii′), and (iii′) hold, then problem (1.1) has the

minimal solution, x∗, and the maximal one, x∗.
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Moreover, for each t ∈ I we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) ≤ f(s, v(s)) a.e., v(t0) ≤ x0}, (3.16)

x∗(t) = min{v(t) : v ∈ AC(I), v′(s) ≥ f(s, v(s)) a.e., v(t0) ≥ x0}. (3.17)

Proof. We start by defining an operator G : AC(I) → AC(I) as follows: for

each v ∈ AC(I), Gv is the minimal Krasovskij solution of x′ = h(t, x, v(t)),

x(t0) = x0, or, equivalently, the minimal solution of the multivalued problem

x′(t) ∈ H(t, x(t), v(t)) for a.a. t ∈ I, x(t0) = x0. (3.18)

Claim 1 – Gv is well defined. By lemma 3.3, part (c), the mapping (t, x) 7→
h(t, x, v(t)) satisfies (i) and (ii), hence it follows from proposition 2.1 that prob-

lem (3.18) has extremal solutions, and in particular the minimal solution exists.

Claim 2 – G : AC(I) → AC(I) is nondecreasing. Let vi ∈ AC(I), i = 1, 2, be

such that v1 ≤ v2 on I and put yi = Gvi, i = 1, 2. By part (b) in lemma 3.4 we

have for a.a. t ∈ I that

y′2(t) ∈ H(t, y2(t), v2(t)) ⊂ H(t, y2(t), v1(t)) + R+,

which implies that y1 ≤ y2 by virtue of (2.5) and the definition of y1.

A priori bounds on the solutions. As a consequence of (i) and Gronwall’s in-

equality we have that each solution v of (1.1) satisfies

|v(t)| ≤ (1 + |x0|)exp
(∫ t

t0

ψ(s)ds

)
− 1 =: b(t), for all t ∈ I.

Claim 3 – Gb ≤ b . Indeed, from (i) and the definition of b we have that

h(t, b(t), b(t)) = f(t, b(t)) ≤ ψ(t)(1 + b(t)) = b′(t) for a.a. t ∈ I.

Then b′(t) ∈ H(t, b(t), b(t)) +R+ for a.a. t ∈ I, and moreover b(t0) = |x0| ≥ x0.

Therefore, by (2.5) we deduce that Gb ≤ b.

Claim 4 – There exists a ∈ AC(I), a ≤ b, such that Gv ≥ a for all v ≤ b (in

particular Ga ≥ a) and moreover if v ∈ AC(I) is a solution of (1.1) then

v ∈ [a, b] := {z ∈ AC(I) : a(t) ≤ z(t) ≤ b(t) for all t ∈ I}.
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By the definition of h and (i) we have for each v ∈ AC(I), with v ≤ b, that

|h(t, x, v(t))| ≤ ψ(t)(1 + b(t))(1 + |x|) for a.a. t ∈ I and for all x ∈ R.

Since the right-hand side of the above inequality is independent of v then there

exists ψ̄ ∈ L1(I) such that for each v ∈ AC(I), with v ≤ b, we have

|(Gv)′(t)| ≤ ψ̄(t) for a.a. t ∈ I. (3.19)

Let us define

a(t) = min
{
−b(t), x0 −

∫ t

t0

ψ̄(s)ds

}
for all t ∈ I.

By (3.19) for all v ∈ AC(I) such that v ≤ b we have that a ≤ Gv. Since a ≤ b

in particular it holds that a ≤ Ga. Moreover, for any solution v of (1.1) we

have that |v(t)| ≤ b(t) for all t ∈ I, and by the definition of a we also have that

v ∈ [a, b].

Claim 5 – G has the minimal fixed point in the functional interval [a, b].

By claims 2, 3, and 4 we have that a ≤ Ga, Gb ≤ b, and G is nondecreasing.

Moreover, (3.19) holds for each v ∈ [a, b]. Then, by [15, proposition 1.4.4] there

exists x∗ the minimal fixed point of G in [a, b], which satisfies

x∗ = min{x ∈ [a, b] : Gx ≤ x}. (3.20)

Claim 6 – x∗ is the minimal solution of problem (1.1). Since Gx∗ = x∗, we have

that x∗(t0) = x0 and x′∗(t) ∈ H(t, x∗(t), x∗(t)) for a.a. t ∈ I. Therefore, part

(a) in lemma 3.4 guarantees that x′∗(t) ∈ F (t, x∗(t)) for a.a. t ∈ I.

We define A = {t ∈ I : x∗(t) ∈ K(t)} and B = I \ A. By (iii′) and part

(a) in lemma 2.3, we have that x′∗(t) = f(t, x∗(t)) for a.a. t ∈ A. On the other

hand, h(t, ·, x∗(t)) is continuous on R\K(t) for a.a. t ∈ I (lemma 3.3, part (c)),

and then H(t, x∗(t), x∗(t)) = {h(t, x∗(t), x∗(t))} = {f(t, x∗(t))} for a.a. t ∈ B.

Thus we also have x′∗(t) = f(t, x∗(t)) for a.a. t ∈ B, and therefore x∗ is a

(Carathéodory) solution of (1.1).

To see that x∗ is the minimal solution of (1.1) we have to take an arbitrary

solution of (1.1), say x, and show that x∗ ≤ x on I. We have that x(t0) = x0,
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x ∈ [a, b] by claim 4, and

x′(t) = f(t, x(t)) = h(t, x(t), x(t)) ∈ H(t, x(t), x(t)) + R+ for a.a. t ∈ I.

Therefore, by (2.5) and the definition of G we deduce that Gx ≤ x. Now it

follows from (3.20) that x∗ ≤ x.

Claim 7 – x∗ satisfies (3.17). Suppose that v ∈ AC(I) and that

v′(t) ≥ f(t, v(t)) for a.a. t ∈ I, v(t0) ≥ x0.

The mapping y(t) = min{v(t), b(t)}, t ∈ I, belongs to AC(I) and moreover

y′(t) ≥ f(t, y(t)) = h(t, y(t), y(t)) for a.a. t ∈ I, y(t0) = x0,

which implies that y′(t) ∈ H(t, y(t), y(t)) + R+ for a.a. t ∈ I, and then by

(2.5) we have that Gy ≤ y. Since y ≤ b it follows from claim 4 that a ≤ Gy

and therefore a ≤ Gy ≤ y ≤ b. Hence, we deduce from (3.20) that x∗ ≤ y.

Therefore, x∗ ≤ v and (3.17) it is proved.

The arguments to prove that (1.1) has a maximal solution are dual. ut

3.3 Particular cases

In this section we give two corollaries of theorem 3.5 in order to obtain more

easily applicable results. Both results cover the case in which the discontinuity

set graph(K) consists of a countable union of possibly intersecting “curves” in

the (t, x) plane and improve theorem 3.1 in [20] in some aspects:

Corollary 3.6 Assume that for f : I ×R→ R there exists a null-measure set

N ⊂ I such that (i), (ii′), and the following condition holds:

(iii′′) There exist curves γn : In ⊂ I → R, n ∈ N, each one is right-differentiable

a.e. on the interval In, and such that for all t ∈ I \N we have

lim sup
y→x−

f(t, y) ≤ f(t, x) ≤ lim inf
y→x+

f(t, y) for x ∈ R \ ∪∞n=1{γn(t)},

lim inf
y→x−

f(t, y) ≥ f(t, x) ≥ lim sup
y→x+

f(t, y) for all x ∈ ∪∞n=1{γn(t)};
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moreover, for each n ∈ N and a.a. t ∈ In the relation

min
{

f(t, γn(t)), lim inf
y→γn(t)

f(t, y)
}
≤ (γn)′+(t)

≤ max

{
f(t, γn(t)), lim sup

y→γn(t)

f(t, y)

}

implies (γn)′+(t) = f(t, γn(t)).

Then the problem (1.1) has extremal solutions, which satisfy (3.16) and (3.17).

Proof. We may assume that γn is right-differentiable on In\N . For each n ∈ N,

we define Kn(t) = {γn(t)} for t ∈ In and Kn(t) = ∅ otherwise. By lemma 1.2

(a), we have for each t ∈ In, t 6∈ N , that

DKn(t, γn(t))(1) = {(γn)′+(t)},

and, following our convention, DK(t, γn(t))(1) = ∅ for t 6∈ In. On the other

hand, for each n ∈ N and t ∈ In \N , we have that

∩ε>0cof(t, γn(t) + εB) =
[
min

{
f(t, γn(t)), lim inf

y→γn(t)
f(t, y)

}
,

max

{
f(t, γn(t)), lim sup

y→γn(t)

f(t, y)

}]
,

and the result follows from theorem 3.5. ut

Now we state another consequence of theorem 3.5 and lemma 1.2.

Corollary 3.7 Assume that for f : I ×R→ R there exists a null-measure set

N ⊂ I such that (i), (ii′), and the following conditions hold:

(iii′′′) There exist curves γn : In ⊂ I → R, n ∈ N such that for all t ∈ I \N we

have

lim sup
y→x−

f(t, y) ≤ f(t, x) ≤ lim inf
y→x+

f(t, y) for x ∈ R \ ∪∞n=1{γn(t)},

lim inf
y→x−

f(t, y) ≥ f(t, x) ≥ lim sup
y→x+

f(t, y) for all x ∈ ∪∞n=1{γn(t)};
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moreover, for each n ∈ N and a.a. t ∈ In we have

either D+γn(t) < min
{

f(t, γn(t)), lim inf
y→γn(t)

f(t, y)
}

or D+γn(t) > max

{
f(t, γn(t)), lim sup

y→γn(t)

f(t, y)

}
.

Then the problem (1.1) has extremal solutions, which satisfy (3.16) and (3.17).

We illustrate the applicability of corollaries 3.6 and 3.7 in the following

examples. As far as the authors are aware there is no previous existence result

which can be applied to study these examples.

Example 3.8 Let {qn}∞n=1 be an enumeration of all rational numbers in (−∞, 0)

and define

ϕ(x) =
∑

qn<x

2−n for all x ∈ R.

Note that ϕ is nondecreasing, and in particular Borel measurable, discontinuous

exactly on Q ∩ (−∞, 0), 0 < ϕ(x) ≤ 1 for all x ∈ R and ϕ(x) = 1 for all x ≥ 0.

Define now ψ : [0, 1]× R→ R as

ψ(t, x) = 2, if x > 0,
= 0, if x < −t,
=

∑

−t/n≤x

2−n, elsewhere,

and note that ψ is nondecreasing to both of its variables. Finally we define

f(t, x) = ϕ(x)(1− ψ(t, x)) for all (t, x) ∈ [0, 1]× R.

It is easy to check using the above mentioned properties about ϕ and ψ that

the conditions of proposition 3.2 are satisfied with j0(t) = 0, jn(t) = −t/n for

all t ∈ [0, 1] and all n ∈ N. Therefore f satisfies condition (ii′). Condition

(i) is immediately verified and thus it only remains to check condition (iii′) in

order to be in a position to apply corollary 3.6. To do it we define γn = jn, for

n = 0, 1, 2, . . . , and we observe that for t ∈ [0, 1]\Q we have that ϕ is continuous

at −t/n and hence

lim
y→x−

f(t, y) ≤ f(t, x) ≤ lim
y→x+

f(t, y) if x 6= −t/n, and
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lim
y→x−

f(t, y) ≥ f(t, x) ≥ lim
y→x+

f(t, y) if x = −t/n or x = 0.

Moreover for each n ∈ N and all t ∈ [0, 1] we have that

γ′n(t) = −1/n < 0 < min
{

f(t, γn(t)), lim inf
y→γn(t)

f(t, y)
}

.

On the other hand, for n = 0 and all t ∈ [0, 1] we have

−1 = min
{

f(t, 0), lim inf
y→0

f(t, y)
}
≤ γ′0(t) = 0

= max
{

f(t, 0), lim sup
y→0

f(t, y)
}

and also γ′0(t) = 0 = f(t, γ0(t)).

Then the problem x′(t) = f(t, x(t)), x(0) = x0, has extremal solutions on

[0, 1], for each x0 ∈ R.

Example 3.9 Let {qn}∞n=1 be an enumeration of all rational numbers and con-

sider the mapping

φ(x) =
∑

qn<x

2−n for all x ∈ R.

Note that φ is nondecreasing, left-continuous everywhere, discontinuous exactly

on Q and 0 < φ(x) < 1 for all x ∈ R.

Let f(t, x) = φ(t− x) + φ(x)− 1 for all (t, x) ∈ [0, 1]× R.

Since φ is Borel measurable, condition (ii′) holds. The remaining conditions

in corollary 3.7 can be easily checked with γn(t) = t − qn for all t ∈ [0, 1] and

n ∈ N. Notice that for all n ∈ N and all t ∈ [0, 1] we have

γ′n(t) = 1 > φ(q+
n ) + φ((t− qn)+)− 1 > max

{
f(t, γn(t)), lim sup

y→γn(t)

f(t, y)

}
.

Therefore the initial value problem x′(t) = f(t, x(t)), x(0) = x0, has extremal

solutions on [0, 1] for each x0 ∈ R.

Remark. We note that the previous corollaries and theorem 3.1 in [20] are not

really comparable: conditions (iii′′) and (iii′′′) are clearly milder than condition

(II) in theorem 3.1 of [20], however, condition (ii′) is stronger than (I) in [20],

which only requires that f(·, x) be measurable for each x.
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