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J. Ángel Cid

Departamento de Análise Matemática,
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1 Introduction

Assuming that we have a result on, roughly speaking, the existence of extremal

solutions and comparison principles for scalar initial value problems of the type
{

z′(t) = g(t, z(t)) for a.a. t ∈ [0, T ],
z(0) = z0,

we can prove, by using Tarski’s fixed point theorem, the existence of extremal

solutions for infinite functional boundary value problems such as



x′(t) = f(t, x(t), x) for a.a. t ∈ [0, T ],

x(θ) = Bx(θ) for all θ ∈ [−r, 0],

under a list of assumptions that we will detail in next section.

Our motivation is to improve in a unified way the main results in the recent

papers [3], [6, 20] and [25].

We prove our main result in section 2. In section 3 we discuss our hypotheses

and its relation with the literature. Finally in section 4 we present a particular

case covered by our main result.

2 Preliminaries and main result

We say that a partially ordered set (poset) X is a lattice if sup{x1, x2} and

inf{x1, x2} exist for all x1, x2 ∈ X. A lattice X is complete when each non

empty subset Y ⊂ X has the supremum and the infimum in X. In particular,

every complete lattice has the maximum and the minimum.

In a poset X we define for each a, b ∈ X, with a ≤ b, the interval

[a, b]X := {x ∈ X : a ≤ x ≤ b}.

The following is the well-known Tarski’s fixed point theorem, [29], which is

a fundamental tool in our work.

Theorem 2.1 Every nondecreasing mapping G : X → X on a complete lattice

X has the minimal, x∗, and a maximal fixed point, x∗. Moreover,

x∗ = min{x ∈ X : Gx ≤ x}, x∗ = max{x ∈ X : x ≤ Gx}.
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Let T > 0 and r > 0 be fixed. We denote by AC([0, T ]) the set of all

functions x : [0, T ] → R which are absolutely continuous and by B([−r, 0]) the

set of all functions x : [−r, 0] → R which are bounded. Let M be an arbitrary

index set and for each ν ∈ M , let hν : [0, T ] → R be a Lebesgue-integrable

function and define

Chν
([0, T ]) =

{
x : [0, T ] → R : |x(s)− x(t)| ≤

∣∣∣∣
∫ t

s

hν(r)dr

∣∣∣∣ ∀ s, t ∈ [0, T ]
}

,

Sν =
{

ξ : [−r, T ] → R : ξ|[−r,0]
∈ B([−r, 0]) and ξ|[0,T ]

∈ Chν
([0, T ])

}
.

We denote S =
∏

ν∈M Sν . Notice that for every ν ∈ M we have that

Chν
([0, T ]) ⊂ AC([0, T ]). In Chν

([0, T ]) and in Sν we consider the pointwise

partial ordering

x1, x2 ∈ Chν ([0, T ]), x1 ≤ x2 ⇐⇒ x1(t) ≤ x2(t) for all t ∈ [0, T ],

ξ1, ξ2 ∈ Sν , ξ1 ≤ ξ2 ⇐⇒ ξ1(t) ≤ ξ2(t) for all t ∈ [−r, T ],

and in S the induced componentwise ordering,

ξ, η ∈ S, ξ ≤ η ⇐⇒ ξν ≤ ην for all ν ∈ M.

In this paper we are going to study the infinite first order functional bound-

ary value problem




x′(t) = f(t, x(t), x) for a.a. t ∈ [0, T ],

x(θ) = Bx(θ) for all θ ∈ [−r, 0],
(2.1)

where f := (fν)ν∈M : [0, T ]× RM × S → RM and B : S → (B([−r, 0]))M .

Definition 2.1 We say that x := (xν)ν∈M ∈ S is a lower solution of problem

(2.1) if for each ν ∈ M we have




x′ν(t) ≤ fν(t, x(t), x) for a.a. t ∈ [0, T ],

xν(θ) ≤ (Bx)ν(θ) for all θ ∈ [−r, 0].

Analogously we say that x := (xν)ν∈M ∈ S is an upper solution of (2.1) if the

above inequalities are reversed. We say that x := (xν)ν∈M ∈ S is a solution of

(2.1) if it is both a lower and an upper solution.
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A solution x∗ ∈ A ⊂ S is a maximal solution in the set A if x∗ ≥ x for any

other solution x ∈ A of (2.1). The minimal solution in A is defined analogously

by reversing the inequalities; when both the minimal and a maximal solutions in

A exist, we call them the extremal solutions in A.

For each ν ∈ M we denote by eν := (δν
µ)µ∈M the element of RM with

components δν
µ = 1, if µ = ν, and δν

µ = 0, if µ 6= ν.

Next we present our main result.

Theorem 2.2 Let f := (fν)ν∈M : [0, T ] × RM × S → RM and B : S →
(B([−r, 0]))M . Assume that there exist α, β ∈ S with α ≤ β such that the

following hypotheses hold:

(i) For each ν ∈ M and each ξ := (ξν)ν∈M ∈ [α, β]S the scalar initial value

problem {
z′(t) = gξ

ν(t, z(t)) for a.a. t ∈ [0, T ],
z(0) = (Bξ)ν(0),

(2.2)

where gξ
ν : [0, T ]× R→ R is defined by

gξ
ν(t, z) := fν(t, ξ(t) + (z − ξν(t))eν , ξ) for all (t, z) ∈ [0, T ]× R, (2.3)

has a maximal solution in A := [α̃ν , β̃ν ]Chν ([0,T ]), z∗, and the minimal

solution in A, z∗, which moreover satisfy

z∗ = max{z ∈ A : z′(t) ≤ gξ
ν(t, z(t)) a.e. [0, T ], z(0) ≤ (Bξ)ν(0)}, (2.4)

z∗ = min{z ∈ A : z′(t) ≥ gξ
ν(t, z(t)) a.e. [0, T ], z(0) ≥ (Bξ)ν(0)}, (2.5)

where α̃ν = αν|[0,T ]
and β̃ν = βν|[0,T ]

.

(ii) For each ν ∈ M , each ξ ∈ [α, β]S and a.a. t ∈ [0, T ] we have that if

x, y ∈ RM with x ≤ y and xν = yν then fν(t, x, ξ) ≤ fν(t, y, ξ).

(iii) For each ν ∈ M , a.a. t ∈ [0, T ] and all x ∈ RM the function fν(t, x, ·) is

nondecreasing in [α, β]S .
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(iv) B : [α, β]S → (B([−r, 0]))M is nondecreasing and moreover

Bα(θ) ≥ α(θ) and Bβ(θ) ≤ β(θ) for all θ ∈ [−r, 0].

Then problem (2.1) has a maximal solution, x∗, and the minimal one, x∗,

in [α, β]S . Moreover, we have

x∗ = max{x ∈ [α, β]S : x is a lower solution of (2.1)}, (2.6)

x∗ = min{x ∈ [α, β]S : x is an upper solution of (2.1)}. (2.7)

Proof. We shall prove the existence of the maximal solution since the existence

of the minimal solution follows from the dual arguments.

Let us consider for each ν ∈ M the mapping Gν : [α, β]S → [αν , βν ]Sν

defined for each ξ ∈ [α, β]S as follows:

Definition of Gνξ on [-r,0]. We define

Gνξ(θ) = (Bξ)ν(θ) for all θ ∈ [−r, 0].

Notice that α ≤ β and condition (iv) imply α ≤ Bα ≤ Bξ ≤ Bβ ≤ β on [−r, 0]

and then αν ≤ Gνξ ≤ βν on [−r, 0].

Definition of Gνξ on [0,T]. By condition (i) we can define

(Gνξ)|[0,T ]
:= the maximal solution in [α̃ν , β̃ν ]Chν ([0,T ]) of the scalar IVP (2.2),

and (Gνξ)|[0,T ]
satisfies (2.4).

Therefore by its definition, Gνξ ∈ [αν , βν ]Sν . Now we consider the map-

ping G := (Gν)ν∈M : [α, β]S → [α, β]S defined for each ξ ∈ [α, β]S as Gξ :=

(Gνξ)ν∈M .

Claim 1. G : [α, β]S → [α, β]S is nondecreasing.

Let ξ, η ∈ [α, β]S be such that ξ ≤ η and fix ν ∈ M . By (iv) we have that

Gνξ = (Bξ)ν ≤ (Bη)ν = Gνη on [−r, 0].

On the other hand (Gνξ)|[0,T ]
∈ [α̃ν , β̃ν ]Chν ([0,T ]) and by conditions (ii), (iii)

and (iv) we deduce

(Gνξ)′(t) = gξ
ν(t, Gνξ(t)) ≤ gη

ν (t, Gνξ(t)) for a.a. t ∈ [0, T ],
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Gνξ(0) = (Bξ)ν(0) ≤ (Bη)ν(0).

which by (2.4) implies that Gνξ ≤ Gνη on [0, T ]. Since ν ∈ M is arbitrary we

conclude that Gξ ≤ Gη.

Claim 2. [α, β]S is a complete lattice.

Since [α, β]S =
∏

ν∈M [αν , βν]Sν
it suffices to prove that for each ν ∈ M the

set [αν , βν]Sν
is a complete lattice. Let ∅ 6= Y ⊂ [αν , βν ]Sν

. We shall prove

only the existence of sup Y , because the existence of inf Y is proved by similar

arguments. We define

ξ∗(t) := sup{ξ(t) : ξ ∈ Y } for all t ∈ [−r, T ].

Since αν(t) ≤ ξ(t) ≤ βν(t) for all t ∈ [−r, T ] it is clear that ξ∗(t) is well defined

for all t ∈ [−r, T ] and αν ≤ ξ∗ ≤ βν on [−r, T ]. So ξ∗ is bounded on [−r, 0].

Finally we shall prove that ξ∗|[0,T ]
∈ Chν ([0, T ]). Fix s, t ∈ [0, T ] and ξ ∈ Y .

Then

ξ(s) ≤ |ξ(s)− ξ(t)|+ ξ(t) ≤
∣∣∣∣
∫ t

s

hν(r)dr

∣∣∣∣ + ξ∗(t).

Now taking the supremum on the left-hand side we obtain ξ∗(s) ≤
∣∣∣
∫ t

s
hν(r)dr

∣∣∣+
ξ∗(t). Interchanging s and t we obtain ξ∗(t) ≤

∣∣∫ s

t
hν(r)dr

∣∣ + ξ∗(s), and com-

bining these results we have

|ξ∗(s)− ξ∗(t)| ≤
∣∣∣∣
∫ t

s

hν(r)dr

∣∣∣∣ .

Therefore ξ∗ ∈ [αν , βν ]Sν and obviously ξ∗ = sup Y .

Claims 1 and 2 imply that G : [α, β]S → [α, β]S satisfies the conditions of

Tarski’s fixed point theorem and then G has the maximal fixed point x∗, which

satisfies

x∗ = max{x ∈ [α, β]S : x ≤ Gx}. (2.8)

Claim 3. x∗ is the maximal solution of problem (2.1) in [α, β]S and moreover

satisfies (2.6).

Indeed, by the definition of G it follows that x∗ is a solution of (2.1). Suppose

now that x := (xν)ν∈M ∈ [α, β]S is a lower solution for (2.1), i.e., for each ν ∈ M
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we have that

x′ν(t) ≤ fν(t, x(t), x) a.e. in [0, T ], xν(θ) ≤ (Bx)ν(θ) for all θ ∈ [−r, 0]. (2.9)

Then by the definition of G, (2.4) and (2.9) we have that x ≤ Gx and thus by

(2.8) we deduce that x ≤ x∗. Moreover, since x∗ is solution of (2.1), and in

particular x∗ is a lower solution of (2.1), we obtain (2.6). ut

3 Remarks on the hypotheses

1. Condition (i) in theorem 2.2 looks difficult to verify, however there are in

the literature a lot of sufficient conditions which imply the existence of extremal

solutions satisfying the comparison properties (2.4) and (2.5) for scalar initial

value problems of the type
{

z′(t) = g(t, z(t)) for a.a. t ∈ [0, T ],
z(0) = z0,

(3.10)

where g : [0, T ]× R→ R and z0 ∈ R.

Let us start by mentioning Carathéodory, [4], who proved that whenever

g : [0, T ]× R→ R satisfies

(C1) for all z ∈ R, g(·, z) is measurable on [0, T ],

(C2) for a.a. t ∈ [0, T ], g(t, ·) is continuous on R,

(C3) there exists h ∈ L1(0, T ) such that for a.a. t ∈ [0, T ] and all z ∈ R

|g(t, z)| ≤ h(t),

then problem (3.10) has at least one absolutely continuous solution (even in

the finite dimensional case). By using Peano’s and Perron’s approach, [23, 24],

Goodman improved in [10] the Carathéodory result in the scalar case, proving

that the function z∗ defined for all t ∈ [0, T ] as

z∗(t) = sup{z(t) : z ∈ AC([0, T ]), z′(s) ≤ g(s, z(s)) a.e., z(0) ≤ z0},
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is a solution of (3.10). Clearly, this result includes the comparison theorem

for differential inequalities and characterizes z∗ as the maximal solution. An

analogous theorem holds of course for the minimal solution z∗. Moreover z∗

and z∗ are the extremal solutions in the functional interval [α̃, β̃]Ch([0,T ]) where

α̃(t) := z0 −
∫ t

0

h(s)ds and β̃(t) := z0 +
∫ t

0

h(s)ds for all t ∈ [0, T ],

and h is the function given in condition (C3).

Goodman’s result has been extensively generalized in recent years [2, 8, 13,

18, 27]. One essential step is due to Hassan and Rzymowski, [13], who proved

the existence of the extremal solutions satisfying the corresponding comparison

principles under the assumptions (C1), (C3), and

(HR) for a.a. t ∈ [0, T ] and all z ∈ R, we have

lim sup
y→z−

g(t, y) ≤ g(t, z) ≤ lim inf
y→z+

g(t, z).

Using a revision of Hassan and Rzymowski’s arguments Pouso showed in [18]

that (HR) may fail along a finite number of curves in the (t, x)-plane and in a

recent paper Cid and Pouso, [8, theorem 3.1], proved that (HR) may fail even

along countable many curves, but regrettably in this last reference the condition

(CP ) for all z ∈ AC([0, T ]), the composition f(·, z(·)) is measurable,

which is stronger than (C1), is needed. Condition (CP ) is a type of “superposi-

tion-measurability” and it arises in a natural way in the study of discontinuous

differential equations (see [1, 2, 3]). It is well-known that conditions (C1) and

(C2) imply (CP ). However conditions (C1) and (HR) do not imply (CP ), as

it is shown with a counterexample in [1].

For positive g’s Carl and Heikkilä improved Hassan and Rzymowski’s result

in the monograph [5] and Cid and Pouso gave in [7] an alternative result which,

roughly speaking, interchanges the roles of t and x in the assumptions.

This incomplete and brief overview shows nevertheless that there is a great

number of results that we can use to check condition (i). In this way theorem 2.2
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immediately extends to functional infinite systems any existence and comparison

result for scalar initial value problems.

2. Condition (ii) in theorem 2.2 is generally known as “quasimonotonicity”,

name coined out by Walter, [31], but in some contexts the term cooperative

also is used. The first author who used this property seems to be Müller,

[22], and since then the quasimonotonicity has been the key to extend several

results about differential equations and inequalities from the scalar case to higher

dimensions [3, 9, 17, 21, 28, 31, 32]. Quasimonotonicity is also important for

extremal fixed points of discontinuous maps [11, 16, 26, 30]. (For a recent survey

on quasimonotonicity see [15]).

3. In our paper we consider a differential equation with functional dependence.

This dependence includes some of the most important kinds of functional dif-

ferential equations: delay differential equations and the equations with maxima

(see [12]). On the other hand, the functional boundary condition considered is

the same that in [20]. It includes the ordinary initial condition x(0) = x0 as well

as several types of periodic conditions, which have more interest, such as the

ordinary periodic condition x(0) = x(T ) and the functional periodic condition

x(θ) = x(θ + T ) for all θ ∈ [−r, 0].

We can also consider for each ν ∈ M the integral boundary conditions

xν(0) =
∫ T

0
xν(s)ds or γν =

∫ T

0
xν(s)ds, where γν is a real constant (this last

condition was suggested in [19]).

It is remarkable that we don’t need any assumption about the compactness

of operator B (compare with [5, section 2.4]). Regrettably such a boundary

condition as xν(0) =
∫ T

2
−r

xν(s)ds for each ν ∈ M is not included in our theorem

because the operator

(Bξ)ν(θ) :=
∫ T

2

−r

ξν(s)ds for all θ ∈ [−r, 0],

is not defined for all ξ ∈ S since ξν needs not be Lebesgue-measurable on [−r, 0].

Obviously this operator can be defined in the smaller set Ŝ =
∏

ν∈M Ŝν ⊂ S
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where

Ŝν =
{

ξ ∈ Sν : ξ|[−r,0]
is Lebesgue-measurable

}
,

but theorem 2.2 is false if we simply replace S by Ŝ (a counterexample is showed

in [6]).

4 A particular case

In this section we extend, by using theorem 2.2, the scalar existence theorem

[20, theorem 2.4] to an existence result for problem (2.1) and in this way we

generalize [3, theorem 1.1], [20, theorem 3.3] (see also [6]) and [25, theorem 2]).

Theorem 4.1 Let f := (fν)ν∈M : [0, T ] × RM × S → RM and B : S →
(B([−r, 0]))M . Let α := (αν)ν∈M , β := (βν)ν∈M ∈ S with α ≤ β and assume

hypotheses (ii), (iii), (iv) and

(i′) For each ν ∈ M and each ξ := (ξµ)µ∈M ∈ [α, β]S we have:

(a) For all z ∈ R the function t → fν(t, ξ(t) + (z − ξν(t))eν , ξ) is mea-

surable on [0, T ].

(b) For a.a. t ∈ [0, T ] and all x := (xµ)µ∈M ∈ RM we have

lim sup
y→x−ν

fν(t, x+(y−xν)eν , ξ) ≤ fν(t, x, ξ) ≤ lim inf
y→x+

ν

fν(t, x+(y−xν)eν , ξ).

(c) For a.a. t ∈ [0, T ] we have

|fν(t, x, ξ)| ≤ hν(t) for all α(t) ≤ x ≤ β(t).

(d) For a.a. t ∈ [0, T ] we have

α′ν(t) ≤ fν(t, α(t), α) and β′ν(t) ≥ fν(t, β(t), β).

Then problem (2.1) has a maximal solution, x∗, and the minimal one, x∗,

in [α, β]S . Moreover, we have

x∗ = max{x ∈ [α, β]S : x is a lower solution of (2.1)},
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x∗ = min{x ∈ [α, β]S : x is an upper solution of (2.1)}.

Proof. We only have to prove that condition (i) of theorem 2.2 follows from

our assumptions. Fix ν ∈ M and ξ ∈ [α, β]S .

By conditions (i′)− (d), (ii), (iii) and (iv), we obtain

α′ν(t) ≤ fν(t, α(t), ξ) ≤ fν(t, ξ(t)+(αν(t)−ξν(t))eν , ξ) = gξ
ν(t, αν(t)) a.e. on [0, T ],

αν(0) ≤ (Bα)ν(0) ≤ (Bξ)ν(0),

and the reversing inequalities are deduced for βν . Then α̃ν := αν |[0,T ]
and

β̃ν := βν |[0,T ]
are lower and upper solutions, respectively, for the initial value

problem (2.2) (see [20, definition 2.3] where the concept of lower and upper

solutions for problem (2.2) is defined). Moreover condition (i′) implies

1. For all z ∈ R the function gξ
ν(·, z) is measurable on [0, T ].

2. For a.a. t ∈ [0, T ] and all z ∈ R we have

lim sup
y→z−

gξ
ν(t, y) = lim sup

y→z−
fν(t, ξ(t) + (y − ξν(t))eν , ξ)

≤ fν(t, ξ(t) + (z − ξν(t))eν , ξ) = gξ
ν(t, z)

≤ lim inf
y→z+

fν(t, ξ(t) + (y − ξν(t))eν , ξ) = lim inf
y→z+

gξ
ν(t, y).

3. For a.a. t ∈ [0, T ] we have

|gξ
ν(t, z)| ≤ hν(t) for all α̃(t) ≤ z ≤ β̃(t).

Then adapting [13, theorem 3.1] to the case of lower and upper solutions in

the same way that in [20, theorem 2.4], we obtain the existence of the extremal

solutions for the initial value problem (2.2) satisfying (2.4) and (2.5). ut

Remarks. 1. Biles and Schechter studied in [3, theorem 1.1] the quasimono-

tone infinite system (2.1) without functional dependence and considering only

the initial condition x(0) = 0. Their method for proving the existence of so-

lutions consists in taking the supremum of subsolutions and showing that this
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supremum is a solution. To accomplish this they use measure-theoretic tech-

niques used for the one dimensional case in [27].

In [25, theorem 2] Pikuta and Rzymowski extended to functional differential

equations the result of Biles and Schechter (only for the finite dimensional case).

Their proof relies directly on Hassan and Rzymowski’s result [13, theorem 3.1]

for scalar initial value problems.

Liz and Pouso considered in [20, theorem 3.3] (see also [6]) the problem (2.1)

(only for the scalar case M=1) introducing the general boundary functional

condition ξ(θ) = Bξ(θ) for all θ ∈ [−r, 0] and considering lower and upper

solutions. Their proof is based on a fixed point theorem which is given in [14].

We point out that although these three results were proved by different

methods and in different contexts, our theorem 4.1 improves all them at one

stroke with an unified technique.

2. For the scalar case (M=1) condition (i)′ − (a) is simply

(I) For all z ∈ R the function f(·, z, ξ) is measurable on [0, T ].

We can wonder whether theorem 4.1 is still true when weakening condition

(i)′ − (a) to the multidimensional analogue of (I), that is,

(II) For all z ∈ RM the function fν(·, z, ξ) is measurable on [0, T ].

The answer in general is negative, even for M = 2, as we show in the following

counterexample.

Counterexample: Let S any non measurable set such that S ⊂ [0, 1] and

define g : [0, 1]× R→ R

g(t, z) =





1 , t ∈ [0, 1], z > t,

1 , t ∈ S, z = t,

0 , otherwise.

(This function was used by Biles in [1]). Consider now the system
{

x′(t) = g(t, y) a.e. in [0, 1] , x(0) = 0,

y′(t) = 1 a.e. in [0, 1] , y(0) = 0.
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This system satisfies the assumptions of theorem 4.1 replacing condition (i′)−(a)

by (II). Nevertheless it is easy to see that it has no solution.
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