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1 Introduction and preliminaries

In [9] the author gives sufficient conditions for the existence of a non-zero fixed

point for a nondecreasing mapping f : Rm
+ → Rm

+ by using the properties of the

topological degree. This result has applications in the study of economic models

and, surprisingly enough, it results equivalent to Brouwer fixed point theorem

through the use of the Knaster-Kuratowski-Mazurkiewicz lemma (see [8])

In this paper we use a well-known tool of Nonlinear Analysis, namely Kras-

noselskii’s fixed point theorem on cone expansions, to extend in section 2 the

result of [9] to infinite dimensional Banach spaces. Moreover we apply this ab-

stract result in section 3 to prove the existence of a periodic positive solution

for a second order differential equation.

In the sequel we need the following definitions: a subset K of a real Banach

space N is a cone if it is closed and moreover

(i) K + K ⊂ K;

(ii) λK ⊂ K for all λ ≥ 0;

(iii) K ∩ (−K) = {θ}.

A cone K defines the partial ordering in N given by x ¹ y if and only if

y − x ∈ K. We use the notation x ≺ y for y − x ∈ K \ {θ} and x � y for

y − x /∈ K. Note that trough the paper we reserve the symbol “≤”, and its

obvious variants, for the usual order on the real line.

The cone K is normal if there exists c > 0 such that ‖x‖ ≤ c‖y‖ for all x, y ∈
N with x ¹ y. Whenever int(K) 6= ∅ the symbol x ¿ y means y − x ∈ int(K).
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We also need the following fixed point theorem on cone expansions due to

Krasnoselskii (see [11, Theorem 13.D]).

Theorem 1.1 Let N be a real Banach space with order cone K. Suppose that

the operator T : K → K is completely continuous and a cone expansion, i.e.,

there exist 0 < r < R such that

Tx � x for all x ∈ K with ‖x‖ = r (1.1)

and

Tx � x for all x ∈ K with ‖x‖ = R. (1.2)

Then T has a fixed point x on K with r < ‖x‖ < R.

Throughout the paper we shall use the following notation: if b > 0 and

1 ≤ p ≤ ∞ then Lp(0, b) denotes the usual Lebesgue space, AC[0, b] is the set

of absolutely continuous functions on [0, b] and W 2,1 = {x ∈ C1[0, b] : x′ ∈
AC[0, b]}.

2 A positive fixed point theorem

In the following result we present sufficient conditions for a nondecreasing op-

erator defined on an ordered Banach space to have at least a positive non-zero

fixed point.

Theorem 2.1 Let N be a real Banach space, K a normal cone with nonempty

interior and T : K → K a nondecreasing and completely continuous operator.

Define S = {x ∈ K : Tx ¹ x} and suppose that

(i) There exists x̄ ∈ S such that x̄ À θ.

(ii) S is bounded.

Then there exists x ∈ K, x 6= θ, such that x = Tx.
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Proof. Since x̄ ∈ int(K) there exists r > 0 such that B(x̄, r) ⊂ K. Now, if

x ∈ K with ‖x‖ = r it is clear that x̄ − x ∈ B(x̄, r) ⊂ K and therefore x ¹ x̄.

Now we suppose two cases.

Case (I).- Firstly, suppose that there exists x ∈ K with ‖x‖ = r such that

Tx º x. Let us define the sequence x0 = x, xn = Txn−1 for all n ∈ N. Since

x ¹ x̄, x̄ ∈ S and T is nondecreasing we have that

θ ≺ x ¹ xn = Tnx ¹ Tnx̄ ¹ x̄ for all n ∈ N.

Then the normality of K implies that ‖xn‖ ≤ c‖x̄‖, that is, {xn}∞n=0 is bounded.

Now, as T is a completely continuous operator, the sequence {Txn}∞n=0 =

{xn}∞n=0 is relatively compact and therefore there exists a subsequence {xnk
}∞k=1

converging to a point x∗. Notice that, since T is nondecreasing, xnk
¹ x∗ for

each k. Thus for each n ≥ nk we have xnk
¹ xn ¹ x∗ and, from the normality

of K, it follows that

‖x∗ − xn‖ ≤ c‖x∗ − xnk
‖,

which implies that the whole sequence {xn}∞n=0 → x∗. Since T is continuous

we deduce that x∗ = Tx∗ and therefore x∗ is a fixed point of T such that

θ ≺ x ¹ x∗ ¹ x̄. In particular x∗ ∈ K \ {θ}.

Case (II).- To the contrary suppose that Tx � x for all x ∈ K with ‖x‖ = r.

Now, since S is bounded there exists R > r such that Tx � x for all x ∈ K with

‖x‖ = R. Thus Theorem 1.1 implies the existence of a non-zero fixed point also

in this case. ut

Remark 2.1 (I) Clearly condition (ii) can be replaced by the weaker one

(ii)∗ There exists R > 0 such that S ∩ {x ∈ K : ‖x‖ = R} = ∅

(II) Theorem 2.1 combines the monotone iterative technique with the expansion

fixed point theorem of Krasnoselsskii. Of course, the clasical monotone method
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(see [1]) is also applicable under our assumptions but it does not exclude the

zero fixed point. Actually, if Tθ Â θ and S 6= ∅ the existence of a non-zero fixed

point for the nondecreasing operator T follows by the monotone method under

much weaker assumptions than continuity and compactness (see the monograph

[5]). Hence, the significant case for us is whenever the zero fixed point is al-

ready known, that is, when Tθ = θ. On the other hand, the main difference of

Theorem 2.1 with Krasnoselskii’s type fixed point theorems (see [4, 11] or the

recent generalization [12]) is that we assume condition (1.2) but condition (1.1)

is replaced by the monotonicity of the operator. In applications conditions (1.1)

and (1.2) traduce on the asymptotic behavior of the nonlinearity on 0 and +∞,

respectively. Theorem 2.1 shall allow us to impose only an asymptotic behavior

on +∞ but none on 0.

(III) Under the assumptions of Theorem 2.1 the monotonicity condition of T :

K → K can be improved by the following one: there exists a real constant M ≥ 0

such that the operator Tx + Mx is nondecreasing on K. The proof of this fact

relies in the equivalence between the fixed point equation Tx = x and Ax = x,

where

Ax ≡ 1
1 + M

(T + M Id)x.

Moreover, it is easy to show that A : K → K is a condensing operator (see [11,

Example 11.7]) and Ax ¹ x if and only if Tx ¹ x. (Notice that the combination

of monotone iterative technique and Theorem 1.1 given in the proof of Theorem

2.1 are also valid for condensing maps.)

As a particular case of Theorem 2.1 with N = Rm and the cone K = Rm
+

we obtain the following result.

Corollary 2.1 ([9, theorem 5]) Assume that f : Rm
+ → Rm

+ is continuous and

nondecreasing. Let S = {x ∈ Rm
+ : f(x) ¹ x}. If S is bounded, and if there is

an x′ À θ, x′ ∈ S, then there is x º θ, x 6= θ, such that x = f(x).
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3 A periodic boundary value problem

Consider the following periodic problem

x′′(t) + a(t)x(t) = f(t, x(t)) a.a. t ∈ I = [0, b], x(0) = x(b), x′(0) = x′(b),

(3.3)

where a(t) ∈ Lp(0, b), 1 ≤ p ≤ ∞ and f : [0, b] × R → R is a L1-Carathéodory

function, that is,

(i) for a.a. x ∈ R, f(·, x) is measurable;

(ii) for all t ∈ I, f(t, ·) is continuous;

(iii) for each r > 0 there exists hr(t) ∈ L1(0, b) such that

|f(t, x)| ≤ hr(t) for a.a. t ∈ [0, b] and all x ∈ [−r, r].

Moreover we assume the following condition:

(a0) The Hill’s equation x′′(t) + a(t)x(t) = 0 is nonresonant (i.e., its unique

periodic solution is the trivial one) and the corresponding Green’s function

satisfies that G(t, s) > 0 for all (t, s) ∈ [0, b]× [0, b].

Whenever a(t) ≡ k2 condition (a0) is equivalent to 0 < k2 <
(π

b

)2

(see [2]).

For a nonconstant function a(t) there exists a Lp-criterium proved by Torres in

[10]. For the sake of completeness let us recall such result: consider the Hilbert

space

H1
0 (0, b) = {x ∈ AC[0, b] : x′ ∈ L2(0, b) and x(0) = x(b) = 0},

and define K(α) as the best Sobolev constant in the inequality

C‖u‖2α ≤ ‖u′‖22 for all u ∈ H1
0 (0, b),

given explicitly by

K(α) =





2π

αb1+2/α

(
2

2 + α

)1−2/α (
Γ(1/α)

Γ(1/2 + 1/α)

)2

, if 1 ≤ α < ∞,

4
b
, if α = ∞,
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where Γ is the gamma function.

For a ∈ L1(0, b) the symbol a Â 0 means that a(t) ≥ 0 for a. e. t ∈ (0, b) and

a(t) > 0 on a set of positive measure and p∗ denotes the conjugate of p ∈ [1,∞]

(that is, 1
p + 1

p∗ = 1). Now [10, Corollary 2.3] reads as follows.

Theorem 3.1 Assume that a ∈ Lp(0, b) for some 1 ≤ p ≤ ∞, a Â 0 and

moreover

‖a‖p < K(2p∗).

Then condition (a0) holds.

It is well known that if the equation x′′(t)+a(t) x(t) = 0 is nonresonant then

a solution of problem (3.3) is equivalent to a fixed point of operator T : C(I) →
C(I) given by

Tx(t) =
∫ b

0

G(t, s)f(s, x(s))ds for all t ∈ I,

where G(t, s) is the corresponding Green’s function.

When a(t) ≡ k2 the expression of the Green’s function is given by the formula

(see [2]):

G(t, s) =
1

2 k (1− cos k b)





sin k (b− t + s) + sin k (t− s), if s ≤ t,

sin k (b + t− s)− sin k (t− s), if t ≤ s.

Assuming (a0), we define

m = min
t,s∈I

G(t, s) and M = max
t,s∈I

G(t, s).

Clearly 0 < m < M . In particular if a(t) ≡ k2 and 0 < k2 <
(π

b

)2

it is not

difficult to verify that

m =
1
2k

cot
(

kb

2

)
and M =

1
2k

csc
(

kb

2

)
.

Now, for each 0 < γ < m
M < 1 consider the cone in C(I)

K = {x ∈ C(I) : x(t) ≥ γ‖x‖∞ for all t ∈ I},
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which is normal with c = 1 and has nonempty interior. Let “¹” be the order

induced in C(I) by the cone K, i.e.,

x ¹ y ⇐⇒ min
t∈I

(y(t)− x(t)) ≥ γ‖y − x‖∞.

Theorem 3.2 Suppose that (a0) and the following assumptions hold:

(f0) f(t, x) ≥ 0 for a.a. t ∈ I and all x ≥ 0.

(f1) f(t, ·) is nondecreasing for a.a. t ∈ I.

(f2) lim
x→+∞

f(t, x)
x

= +∞ uniformly in t.

(f3) There exists x̄ ∈ W 2,1(I) with min
t∈I

x̄(t) > 0, x̄(0) = x̄(b), x̄′(0) = x̄′(b)

and moreover

x̄′′(t) + a(t)x̄(t) ≥ f(t, x̄(t)) for a.a. t ∈ I.

Then problem (3.3) has a positive solution.

Proof. Claim 1. T (K) ⊂ K.

By (f0) we compute

min
t∈I

Tx(t) = min
t∈I

∫ b

0

G(t, s)f(s, x(s))ds ≥
∫ b

0

mf(s, x(s))ds

≥
∫ b

0

γMf(s, x(s))ds ≥ γ max
t∈I

∫ b

0

G(t, s)f(s, x(s))ds = γ‖Tx‖∞,

and then Tx ∈ K for all x ∈ K.

Claim 2. T : K → K is nondecreasing.

From (f1) and similar computations to those of Claim 1 it follows that if

x ¹ y then

min
t∈I

(T y(t)− T x(t)) ≥ γ‖T y − T x‖∞.

Thus T is nondecreasing with respect to the partial ordering induced by K.

Claim 3. T : K → K is completely continuous.

The claim follows by standard arguments.
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Claim 4. x̄ ∈ S = {x ∈ K : Tx ¹ x} and x̄ À θ.

Since min
t∈I

x̄(t) > 0 we can choose 0 < γ < m
M < 1 small enough such that

min
t∈I

x̄(t) > γ‖x̄‖∞,

and then x̄ ∈ int(K).

On the other hand, condition (f3) ensures us the existence of a nonnegative

function h ∈ L1(I) such that

x̄′′(t) + a(t)x̄(t) = f(t, x̄(t)) + h(t) for a.e. t ∈ I,

which is equivalent to

x̄(t)− T x̄(t) =
∫ b

0

G(t, s)h(s)ds.

Now, by similar computations to those of Claim 1 we arrive at

min
t∈I

(x̄(t)− T x̄(t)) ≥ γ‖x̄− T x̄‖∞,

which implies x̄ ¹ T x̄.

Claim 5. S is bounded.

By (f2) there exists α > 0 such that

f(t, x) >
x

γmb
for all x > α and all t ∈ I.

Let x ∈ K be such that min
t∈I

x(t) > α. Then

f(t, x(t)) >
x(t)
γ m b

for all t ∈ I,

and we obtain for all t ∈ I

Tx(t) =
∫ b

0

G(t, s)f(s, x(s))ds >

∫ b

0

G(t, s)
x(s)
γ m b

ds ≥
∫ b

0

m
γ‖x‖∞
γ m b

ds

= ‖x‖∞ ≥ x(t),

so x � Tx and in consequence x 6∈ S. Then, whenever x ∈ S we have min
t∈I

x(t) ≤
α and from

α ≥ min
t∈I

x(t) ≥ γ‖x‖∞,

it follows that S ⊂ B(θ, α
γ ).
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Finally, from the above claims and Theorem 2.1 it follows the existence of a

non trivial fixed point in K for operator T , which is a positive solution of (3.3).

ut

Remark 3.1 (1).- Several results on the existence and multiplicity of positive

solutions for different kinds of boundary value problems can be found in [6, 7, 10]

and references therein.

(2).- In condition (f3) we assume the existence of a positive lower solution

α = x̄ for equation (3.3). It is well-known that when an anti-maximum principle

holds, as in the case studied here, the existence of a lower and an upper solution

satisfying the reversed order, β(t) ≤ α(t) on I, implies the existence of a solution

between them (see [2, 3]). Of course, in our case we could choose β ≡ 0 as an

upper solution but then the trivial solution is not excluded. In Theorem 3.2 the

a-priori bound on the lower solution set S is the fundamental key to ensure the

existence of a positive solution.

References

[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in

ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709.

[2] Cabada, A., The method of lower and upper solutions for second, third,

fourth, and higher order boundary value problems, J. Math. Anal. Appl.

185 (1994), 2, 302-320.

[3] De Coster, C. and Habets, P., Two-point boundary value problems: lower

and upper solutions, Mathematics in Science and Engineering, 205, Else-

vier B. V., Amsterdam, 2006.

[4] Deimling, K., Nonlinear functional analysis, Springer-Verlag, Berlin,

1985.

10
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