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1 Introduction

In this paper we prove an existence result concerning monotone W 2,1 solutions

for the initial value problem{
x′′(t) ∈ F (t, x(t)) for a.a. t ∈ I := [0, T ],
x(0) = x0, x′(0) = x1,

(1.1)

where T > 0 is a priori fixed, x0, x1 ∈ R, and F : I×R → P(R)\{∅} is a multi-

valued mapping which may assume arbitrarily large sets of values, even around

the initial condition (0, x0) (singularity), and needs not satisfy any usual Lips-

chitz or closed-graph condition with respect to the unknown (nonsmoothness)

that one can find in recent references such as [3, 5]. Moreover, as an intermedi-

ate step towards our main result, we derive necessary and sufficient conditions

for the existence of nonconstant solutions for (1.1) in the autonomous case.
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Our existence result seems to be new even for differential equations, which

correspond to differential inclusions with singleton-valued right-hand sides.

We follow the spirit of [1] in the construction of adequate selections of F ,

mixed with an argument already employed in [4, 7] which lets one extend exis-

tence results from autonomous to nonautonomous problems. A recent existence

result proved in [8] for second order autonomous differential equations is also

needed in our work.

2 Preliminaries

Consider first the autonomous problem{
x′′(t) = f(x(t)) for a.a. t ∈ I,
x(0) = x0, x′(0) = x1.

(2.2)

The solutions of (2.2) that we are going to consider here are elements of the

Sobolev space W 2,1(I).

One can find in [8] the following necessary and sufficient conditions for the

existence of nonconstant solutions of (2.2):

Theorem 2.1 Problem (2.2) has a nonconstant solution x : I → R if and only

if there exists R > 0 such that the following claims hold for at least one of the

intervals

J =

{
[x0, x0 + R], if sgn(x1) = 1,
[x0 −R, x0], if sgn(x1) = −1,

where sgn(z) = z/|z| for z 6= 0 and sgn(0) = ±1:

1. f ∈ L1(J).

2. x2
1 + 2

∫ x

x0

f(r)dr > 0 for a.a. x ∈ J .

3. max{1,|f |}√
x2
1+2

∫ ·
x0

f(r)dr
∈ L1(J).

4.
∫

J

dx√
x2

1 + 2
∫ x

x0
f(r)dr

≥ T .
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Moreover, in this case there exists an increasing solution if sgn(x1) = 1 and

a decreasing solution if sgn(x1) = −1, and they are defined implicitly for all

t ∈ [0, T ] by ∫ x(t)

x0

dr√
x2

1 + 2
∫ r

x0
f(s)ds

= sgn(x1)t.

3 The autonomous differential inclusion

In this section we deal with the autonomous problem{
x′′(t) ∈ F (x(t)) for a.a. t ∈ I,
x(0) = x0, x′(0) = x1,

(3.3)

where F : Dom(F ) ⊂ R → P(R) \ {∅}.

Definition 3.1 Let F : Dom(F ) ⊂ R → P(R) \ {∅} be a multivalued mapping.

A function f : [x0, x0 + R] → R, R > 0, is an admissible selection on the

right of x0 for F if f is a selection of F|[x0,x0+R] and satisfies the following

properties:

(i) f ∈ L1(x0, x0 + R).

(ii) x2
1 + 2

∫ x

x0

f(r)dr > 0 for a.a. x ∈ [x0, x0 + R].

(iii) max{1,|f |}√
x2
1+2

∫ ·
x0

f(r)dr
∈ L1(x0, x0 + R).

(iv)
∫ x0+R

x0

dx√
x2

1 + 2
∫ x

x0
f(r)dr

≥ T .

We define admissible selections on the left of x0 in a similar way with intervals

of the type [x0 −R, x0] for some R > 0.

The relevance of admissible selections in our work comes from the following

theorem. Note that it gives not only sufficient conditions for existence, but also

necessary ones.

Theorem 3.1 The following claims hold:
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(i) Problem (3.3) has an increasing solution if and only if F has an admissible

selection on the right of x0.

(ii) Problem (3.3) has a decreasing solution if and only if F has an admissible

selection on the left of x0.

Proof. We only prove part (i) because part (ii) is similar.

Suppose that x : I = [0, T ] → R is an increasing solution of (3.3). Define

J := [x0, x(T )] = [x0, x0 + R] for R = x(T )− x0 > 0

and define f : J → R as

f(y) =

{
x′′(x−1(y)), if x′′(x−1(y)) exists and x′′(x−1(y)) ∈ F (y),
any element of F (y), in other case.

Then f is a selection of F and, since x is a solution of problem (2.2) with this

function f , by theorem 2.1 we have that f is an admissible selection on the right

of x0 of (3.3).

Conversely, if f is an admissible selection of F on the right of x0 then

by theorem 2.1 the problem (2.2) has an increasing solution x. Since f is in

particular a selection of F we have that x is also an increasing solution of

problem (3.3). ut

For the sake of clarity and completeness we give next some sufficient con-

ditions for a multivalued mapping to have admissible selections on the right of

x0. It is natural to look first at the greatest and the least selections, if they

exist. Thus, for a given multivalued mapping F : Dom(F ) ⊂ R → P(R) \ {∅}

we define

iF (x) := inf F (x) and sF (x) := supF (x) for all x ∈ Dom(F ), (3.4)

where inf and sup are computed in the extended real line and, thus, they can

assume the values −∞ and +∞, respectively. Note that if f : J → R is a

selection of F|J we immediately have

iF (x) ≤ f(x) ≤ sF (x) for all x ∈ J .
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The following proposition is a straightforward consequence of this definition,

and it concerns the case when iF or sF are selections of F :

Proposition 3.1 Let F : Dom(F ) ⊂ R → P(R)\{∅} be a multivalued mapping

and let iF and sF be defined as in (3.4).

If there is R > 0 such that iF (x) ∈ F (x) (respectively, sF (x) ∈ F (x)) for all

x ∈ [x0, x0 + R] and iF (respectively, sF ) satisfies conditions (i) − (iv) in the

definition (3.1), then iF (respectively, sF ) is the least (respectively, the largest)

admissible selection of F on [x0, x0 + R].

In general, one cannot expect iF and sF to be selections of F . Next propo-

sition is useful in those situations. Its proof is easy and so we omit it.

Proposition 3.2 Let F : Dom(F ) ⊂ R → P(R)\{∅} be a multivalued mapping

and let iF and sF be defined as in (3.4).

Assume there is R > 0 such that

(i) iF , sF ∈ L1(x0, x0 + R).

(ii) x2
1 + 2

∫ x

x0

iF (r)dr > 0 for a.a. x ∈ [x0, x0 + R].

(iii) max{1,|iF |,|sF |}√
x2
1+2

∫ ·
x0

iF (r)dr
∈ L1(x0, x0 + R).

(iv)
∫ x0+R

x0

dx√
x2

1 + 2
∫ x

x0
sF (r)dr

≥ T .

Then any measurable selection of F|[x0,x0+R] is an admissible selection of F

on the right of x0.

The main drawback in our last proposition is that it does not directly pro-

vide us with a criteria of existence of admissible selections. In fact, to apply

proposition 3.2 satisfactorily we also need to know that our multivalued map-

ping has measurable selections. Loosely speaking, we can say that measurable

closed-valued mappings have measurable selections. In order to clarify our last

statement we recall some definitions: let (X,M) be a measurable space and Y
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a topological space, we say that a multivalued mapping F : X → P(Y ) \ {∅} is

measurable when for all open U ⊂ Y we have

F−1(U) := {x ∈ X : F (x) ∩ U} ∈ M;

also, a topological space Y is a Polish space if it is homeomorphic to a complete

separable metric space. Now we are in a position to present a precise statement

(see [11]) of the result mentioned above:

Theorem 3.2 (Kuratowski-Ryll-Nardzewski) Let (X,M) be a measur-

able space and Y be a Polish space.

If F : X → P(Y ) \ {∅} is measurable and assumes only closed values then F

admits a measurable selection.

As an immediate consequence we have the following proposition:

Proposition 3.3 Assume that the conditions of proposition 3.2 hold for some

R > 0.

If F : [x0, x0+R] → P(R)\{∅} is measurable and assumes only closed values

then F has admissible selections on [x0, x0 + R].

Remark. Proposition 3.3 needs that F be closed-valued, which implies that

iF and sF are selections of F . Taking into account the remaining conditions

in proposition 3.3, we can ensure that iF and sF are then admissible selections

of F on the right of x0, which is not much more interesting than the result in

proposition 3.1.

To take a more satisfactory profit of proposition 3.3 the reader must notice

that F does not really need to assume closed values. In general, one has to

look for a suitable closed-valued G : Dom(F ) ⊂ R → P(R) \ {∅} such that

G(x) ⊂ F (x) for all x ∈ Dom(F ), and try to use proposition 3.3 with G instead

of F . Obviously, every admissible selection of G will be an admissible selection

of F .

For more information on measurable selections we refer the reader to [10, 11].
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4 The nonautonomous differential inclusion

Let F : [0, T ]× R → P(R) \ {∅}, sgn(x1) = 1 and

X̂ = {u ∈ C([0, T ]) : u(0) = x0, u is nondecreasing}.

For each u ∈ X̂ we define its “pseudoinverse” û : R → [0, T ] as

û(x) =


0, x < x0,

minu−1({x}), x0 ≤ x ≤ u(T ),
T, u(T ) < x.

We notice that û is nondecreasing, but not necessarily continuous. Moreover, if

u ∈ X̂ is increasing in I, then û(x) = u−1(x) for all x ∈ [x0, u(T )].

Assume that for some R > 0 the following hypotheses hold:

(F1) For each u ∈ X̂ the multifunction Fu : R → P(R) \ {∅} defined as Fu(·) =

F (û(·), ·) has an admissible selection on the right of x0 fu : [x0, x0 +R] →

R.

(F2) There exists M ∈ L1(x0, x0 + R) such that for all t ∈ I and all x ∈

[x0, x0 + R] we have

sup{y : y ∈ F (t, x)} ≤ M(x).

(F3) For each u, v ∈ X̂, the relation u ≤ v on I implies fu ≤ fv on [x0, x0 +R].

The following is our main result.

Theorem 4.1 Suppose that conditions (F1), (F2) and (F3) hold for some R >

0. Then problem (1.1) with sgn(x1) = 1 has an increasing solution.

Proof. We define the operator G : X̂ → X̂ in the following way: for each u ∈ X̂

the function Gu is given implicitly for all t ∈ [0, T ] by∫ Gu(t)

x0

dx√
x2

1 + 2
∫ x

x0
fu(r)dr

= t,

and in particular Gu is an increasing solution of{
x′′(t) = fu(x(t)) for a.a. t ∈ I,
x(0) = x0, x′(0) = x1.

(4.5)
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Note also that Gu(T ) ≤ x0 + R because fu is an admissible selection.

We claim that there exists L > 0 such that |(Gu)′(t)| ≤ L for all t ∈ I and

all u ∈ X̂. To prove it, let u ∈ X̂ be given and denote x = Gu; by (F2) for a.e.

t ∈ [0, t] we have that

x′′(t) = fu(x(t)) ≤ M(x(t)),

and since x′ ≥ 0 on [0, T ], we have

x′′(t)x′(t) ≤ M(x(t))x′(t) for a.a. t ∈ [0, T ].

Now we integrate between 0 and t ∈ [0, T ] in the previous inequality and we

apply theorems 9.3 and 38.4 in [9] to conclude that

x′
2(t) ≤ x2

1 + 2
∫ x(t)

x0

M(s)ds,

and since x0 ≤ x(t) ≤ x0 + R for all t ∈ [0, T ] and x′ ≥ 0 on [0, T ], we finally

obtain

0 ≤ x′(t) ≤

√
x2

1 + 2
∫ x0+R

x0

M(s)ds =: L for all t ∈ [0, T ].

Therefore, it is clear that if we define

X = {u ∈ X̂ : |u(t)− u(s)| ≤ L|t− s|dr for all t, s ∈ I},

then Gu ∈ X for all u ∈ X̂.

Claim 1. G : X → X is nondecreasing.

Let u, v ∈ X be such that u(t) ≤ v(t) for all t ∈ I. By condition (F3) we

have that fu ≤ fv on [x0, x0 + R] and then from the definition of G it follows

that

Gu(t) ≤ Gv(t) for all t ∈ I.

Claim 2. X is a complete lattice.

Let ∅ 6= Y ⊂ X. We shall show only the existence of supY , because the

existence of inf Y is proved by a similar argument. We define

u∗(t) := sup{u(t) : u ∈ Y } for all t ∈ I.
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Clearly u∗(0) = x0 and u∗(t) is finite for all t ∈ I. Now fix s, t ∈ I and

u ∈ Y . Then

u(s) ≤ |u(s)− u(t)|+ u(t) ≤ L|t− s|+ u∗(t).

Taking the supremum on the left-hand side we obtain that

u∗(s) ≤ L|t− s|+ u∗(t).

Interchanging s and t we have

u∗(t) ≤ L|t− s|+ u∗(s),

and combining both results

|u∗(s)− u∗(t)| ≤ L|t− s|.

Therefore u∗ ∈ X and obviously u∗ = sup Y .

Claim 3. If x ∈ X is a fixed point of G then x is an increasing solution of

problem (1.1).

If x = Gx then x is a solution of problem (4.5) with u = x. Moreover, since

x is increasing and fu is a selection of F (û(·), ·) on [x0, x0 + R] we have that x

is also a solution of problem (1.1).

Conclusion. From claims 1 and 2 we can apply Tarski’s fixed point theorem

(see [12, Theorem 11.E]) to ensure the existence of (at least) one fixed point x

of G. Then by claim 3 x is an increasing solution of (1.1). ut

Remark 4.1 In the case sgn(x1) = −1 we can prove an analogous result on

existence of decreasing solutions.

Now we point out some sufficient conditions for having (F1) and (F3):

Definition 4.1 We say that a multivalued mapping F : I × J → P(R) \ {∅}

is strongly monotone nonincreasing with respect to its first variable if

for s, t ∈ I, s ≤ t, we have

supF (t, x) ≤ inf F (s, x) for all x ∈ J .
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Proposition 4.1 Let F : I × [x0, x0 + R] → P(R) \ {∅} be strongly monotone

nonincreasing with respect to its first variable and let

σF (x) := supF (T, x) and ιF (x) := inf F (0, x) for all x ∈ [x0, x0 + R].

Assume that σF and ιF satisfy the following conditions:

(a) ιF , σF ∈ L1(x0, x0 + R).

(b) x2
1 + 2

∫ x

x0

σF (r)dr > 0 for a.a. x ∈ [x0, x0 + R].

(c) max{1,|ιF |,|σF |}√
x2
1+2

∫ ·
x0

σF (r)dr
∈ L1(x0, x0 + R).

(d)
∫ x0+R

x0

dx√
x2

1 + 2
∫ x

x0
ιF (r)dr

≥ T .

If, moreover, for each u ∈ X̂ the mapping Fu = F (û(·), ·) has a measurable

selection fu : [x0, x0 + R] → R, then F satisfies (F1) and (F3).

Proof. For each u ∈ X̂ let fu be a measurable selection of Fu|[x0,x0+R]. Let us

see that fu is an admissible selection on the right of x0: first, since 0 ≤ û(x) ≤ T

for all t ∈ I, we have

σF (x) ≤ inf F (û(x), x) ≤ supF (û(x), x) ≤ ιF (x),

because F is strongly noincreasing in t. Hence

σF (x) ≤ fu(x) ≤ ιF (x) for all x ∈ [x0, x0 + R],

and, since fu is measurable, condition (a) implies that fu ∈ L1(x0, x0 +R). The

remaining conditions of admissible selection on the right of x0 admit analogous

proofs.

Let us see that (F3) also holds: if u, v ∈ X̂ are such that u ≤ v on I, then

û(x) ≥ v̂(x) for all x ∈ [x0, x0 + R]. Since F is strongly nonincreasing in t, we

have

supF (û(x), x) ≤ inf F (v̂(x), x) for all x ∈ [x0, x0 + R].

Now if fu is an admissible selection of Fu on [x0, x0+R] and fv is a corresponding

one for Fv, the previous relation implies that fu ≤ fv on [x0, x0 + R]. ut
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5 The particular case of differential equations

Plainly, theorem 4.1 covers the case of differential equations. It suffices to

consider equations as inclusions with singleton-valued mappings. To the best

of our knowledge, the application of theorem 4.1 to equations yields a new

existence result, and that is why we think that it deserves to be stated clearly

in a separate section of this paper.

Consider the initial value problem{
x′′(t) = f(t, x(t)) for a.a. t ∈ I := [0, T ],
x(0) = x0, x′(0) = x1 ≥ 0.

(5.1)

Theorem 5.1 Assume that there exists R > 0 such that the function f : I ×

[x0, x0 + R] → R satisfies the following conditions:

(I) For each u ∈ X̂ the mapping fu = f(û(·), ·) satisfies conditions (i)− (iv)

in definition 3.1.

(II) f(·, x) is monotone nonincreasing for each x ∈ [x0, x0 + R].

(III) There exists M ∈ L1(x0, x0 + R) such that for all (t, x) ∈ I × [x0, x0 + R]

we have

f(t, x) ≤ M(x).

Then (5.1) has an increasing solution.

As consequence of Theorem 5.1 we have the following useful corollary.

Corollary 5.1 Assume that there exists R > 0 such that the function f :

I × [x0, x0 + R] → R satisfies the following conditions:

1. For each u ∈ X̂ the mapping fu(·) = f(û(·), ·) is measurable on [x0, x0+R].

2. f(·, x) is monotone nonincreasing for each x ∈ [x0, x0 + R].

3. There exist m,M ∈ L1(x0, x0 +R) such that for all (t, x) ∈ I× [x0, x0 +R]

we have

0 < m(x) ≤ f(t, x) ≤ M(x).
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4. max{1,M(·)}√
x2
1+2

∫ ·
x0

m(r)dr
∈ L1(x0, x0 + R).

5.
∫ x0+R

x0

1√
x2

1 + 2
∫ x

x0
M(r)dr

dx ≥ T.

Then (5.1) has an increasing solution.

Proof. In view of Theorem 5.1 we only have to prove that our assumptions

imply that for each u ∈ X̂ the function fu(·) = f(û(·), ·) satisfies conditions

(i) − (iv) in definition (3.1). From conditions 1 and 3 it follows that fu ∈

L1(x0, x0 +R). Furthermore conditions (ii), (iii) and (iv) in definition (3.1) are

easily deduced from 3, 4 and 5. ut

Remark 5.1 Concerning conditions 4 and 5 in corollary 5.1, we remark that

when m and M are constants then condition 4 is always satisfied and moreover∫ x0+R

x0

1√
x2

1 + 2M(x− x0)
dx =

1
M

(√
x2

1 + 2MR− x1

)
.

Therefore condition 5 can be expressed simply as

R ≥ x1T +
MT 2

2
.

Remark 5.2 It is well-known that if f : I × [x0, x0 + R] → R satisfies the

following “reversed” Carathéodory conditions,

(C1) for a.a. x ∈ [x0, x0 + R] the function f(·, x) is continuous on I,

(C2) for each t ∈ I the function f(t, ·) is measurable on [x0, x0 + R].

then f(v(·), ·) is measurable on [x0, x0 + R] whenever v : [x0, x0 + R] → I

is measurable. In particular if f satisfies (C1) and (C2) then f satisfies the

condition 1 of Corollary 5.1.

Example 5.1 Consider the problem{
x′′(t) = g(t) + h(x(t)) for a.a. t ∈ [0, 1

2 ],
x(0) = 0, x′(0) = 0,

(5.2)
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where g : [0, 1
2 ] → R is monotone nonincreasing,

0 ≤ g(t) ≤ 1 for all t ∈ [0, 1
2 ],

and h : [0, 1
2 ] → R is given by

h(x) =

{
1√
x

if x ∈ (0, 1
2 ],

1 if x = 0.

It is easy to check that the assumptions of Corollary 5.1 hold with f(t, x) =

g(t) + h(x) and therefore the problem 5.2 has an increasing solution on [0, 1
2 ].

We point out that another recent results such as [2, Theorem 1.1] and [6,

Corollary 3.1] are not applicable to our example 5.1.

Finally, note that f tends to +∞ as x tends to 0, hence the equation is

singular at the initial condition.

As an immediate consequence of corollary 5.1 we have an existence result

for the boundary value problem

x′′ = f(t, x), x(−T ) = x(T ), x′(−T ) = −x′(T ). (5.3)

Corollary 5.2 Suppose that f : [−T, T ]× [x0, x0+R] → R satisfies conditions

1 – 5 in corollary 5.1 on the set [0, T ]× [x0, x0 + R] with x1 = 0.

Suppose moreover that for each (t, x) ∈ [−T, T ] × [x0, x0 + R] we have

f(−t, x) = f(t, x).

Then the problem (5.3) has an even solution which increases on [0, T ].

Proof. The assumptions and corollary 5.1 imply that

x′′ = f(t, x), x(0) = x0, x′(0) = 0,

has an increasing solution x : [0, T ] → R. Now since x′(0) = 0 and f is even

with respect to t we conclude that a solution of (5.3) in the conditions of the

statement is given by

v(t) =


x(−t), if t ∈ [−T, 0),

x(t), if t ∈ [0, T ].
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In a similar way we can have an existence result of odd solutions for

x′′ = f(t, x), x(−T ) = −x(T ), x′(−T ) = x′(T ).

ut
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