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c© 2008 Birkhäuser Verlag Basel/Switzerland

Mediterranean Journal
of Mathematics

Sharp conditions for the existence of solutions
of second-order autonomous differential equa-
tions
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Abstract. We prove general existence results for

x′′ = f(x)g(x′), x(0) = x0, x′(0) = x1,

where f and g need not be continuous or monotone. Moreover neither f nor g
need be bounded around, respectively, x0 and x1, thus allowing singularities
in the equation. Several other basic topics such as uniqueness, continuation,
extremality and periodicity are studied in our general framework.
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1. Introduction

This paper is concerned with the derivation of sharp sufficient conditions for the
existence of Carathéodory solutions for the initial value problem

x′′ = f(x)g(x′), x(0) = x0, x′(0) = x1. (1.1)

We recall that a Carathéodory solution of (1.1) is a locally absolutely continuous
function which satisfies the initial conditions and fulfills the differential equation
almost everywhere in its domain.

In order to motivate the type of conditions that we are going to impose over
f and g we recall some previously published results.

It is proven in [6, theorem 3.1] that problem

x′′ = f(x), x(0) = x0, x′(0) = x1, (1.2)
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has a nonconstant solution x : I → R with x(I) = J if and only if

(P) f ∈ L1
loc(J), x2

1 + 2
∫ y

x0
f(s)ds > 0 for almost all y ∈ J and

max{1, |f |}√
x2

1 + 2
∫ ·

x0
f(s)ds

∈ L1
loc(J).

Moreover, if condition (P) holds then (1.2) has a strictly monotone solution x
implicitly given by the expression

∫ x(t)

x0

dr√
x2

1 + 2
∫ r

x0
f(s)ds

= sgn(x1)t for all t ∈ sgn(x1)τ(J),

where sgn(z) = z/|z| for z 6= 0, sgn(0) ∈ {−1, 1}, and

τ : y ∈ J 7−→ τ(y) :=
∫ y

x0

dr√
x2

1 + 2
∫ r

x0
f(s)ds

.

In this paper we fix a class of proper functions g, which includes the model
function g = 1, and we give necessary and sufficient conditions over f for the
existence of solutions of (1.1), extending in this way [6, theorem 3.1]. We remark
that useful necessary conditions of existence over both f and g seem hard to find,
as (1.1) may have nontrivial solutions for pairs of nonmeasurable f and g. As
an example note that the affine function x(t) = x1t + x0, t ∈ R, solves (1.1) if
g(x1) = 0, without further conditions over f and g.

Our main arguments lean on time maps, which play an important role in the
analysis of second-order equations, see [5, 8].

We finish this introduction with a description of the organization of the
present paper. In section 2 we study the case f = 1 and we deduce necessary
and sufficient conditions for solving it. To the best of our knowledge, that result is
new. In section 3 we introduce some preliminary results on change of variables in
the Lebesgue integral which lead to new criteria for the absolute continuity of com-
positions of absolutely continuous functions. In section 4 we fix some conditions
for g and we deduce necessary conditions on f for the existence of Carathéodory
solutions for (1.1). It is worth to note that some of the arguments used in [6] for
(1.1) with g = 1 are no longer valid in our more general setting. This forces us
to employ more complicated arguments in terms of down-up and up-down func-
tions, which are concepts defined in this section. In section 5 we show that the
previous necessary conditions are sufficient too, thus closing our circular existence
result; moreover we are able to establish even more general sufficient conditions
for solving (1.1) by relaxing some of the assumptions on g. In section 6 we study
uniqueness and non-uniqueness of solutions and in section 7 we consider continu-
ation of solutions and we prove a result on periodic solutions.
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2. Some reasonable conditions to impose on g

Note first that in the case f = 1 a function x : I → R is a solution of

x′′(t) = g(x′(t)) for a.a. t, x(0) = x0, x′(0) = x1, (2.1)

if and only if y = x′ is a solution of the first-order problem

y′ = g(y) for a.a. t, y(0) = x1, (2.2)

whose solvability (in the Carathéodory sense) was completely studied by Binding
in [1].

A very special feature of (2.2) is that solutions are monotone. We can sum-
marize Binding’s existence results as follows:

Theorem 2.1. Problem (2.2) has the constant solution if and only if g(x1) = 0.
Moreover, the following conditions are pairwise equivalent for a nontrivial

interval J that contains x1:

1. (2.2) has a nondecreasing (nonincreasing) solution with range J ;
2. g(y) > 0 (g(y) < 0) for a.a. y ∈ J and 1/g ∈ L1

loc(J);
3. (2.2) has a solution with range J and positive (negative) derivative almost

everywhere in its domain.

As a consequence of theorem 2.1 we have a similar result concerning (2.1).
Note that solutions of (2.1) are either concave or convex on their domains.

Corollary 2.2. Problem (2.1) has the affine solution if and only if g(x1) = 0.
Moreover, the following conditions are pairwise equivalent for a nontrivial

interval J̃ that contains x1:

1. (2.2) has a non-affine convex (concave) solution whose derivative has range
J̃ ;

2. g(y) > 0 (g(y) < 0) for a.a. y ∈ J̃ and 1/g ∈ L1
loc(J̃);

3. (2.2) has a solution with range of derivative J̃ and positive (negative) second
derivative almost everywhere in its domain.

Remark 2.3. Solutions can be defined on one side of t = 0 or on both. Specifically,
in the conditions of corollary (2.2) we can say that if for some ε > 0 we have
g(y) > 0 a.e. on (x1, x1 + ε) and 1/g ∈ L1(x1, x1 + ε) then we have a convex
solution defined on the right of t = 0, and if g(y) > 0 a.e. on (x1 − ε, x1) and
1/g ∈ L1(x1 − ε, x1) then we have a convex solution on the left of t = 0. The
situation is similar for the remaining possibilities.

Corollary 2.2 gives us the weakest possible conditions for having solutions of
(2.2), because they are necessary. In this sense those conditions are upper bounds
for the generality we can expect when studying (1.1), and the same is true for
conditions (P) on f .
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3. Preliminary results

Part 1 of the next lemma was established as lemma 2.2, (1) in [6]. Note that,
unlike the usual theorems on change of variable, assumptions are imposed on the
composition (f ◦ x)x′ instead of on f , which is important for our purposes in
this paper. Specifically, this result is a key ingredient in our subsequent study of
absolute continuity of compositions of absolutely continuous functions. Parts 2 and
3 of the lemma are respectively theorems 38.3 and 38.4 of [7].

Lemma 3.1. Let f : [a, b] → R ∪ {−∞, +∞} be measurable and let x ∈ AC(I),
I = [t1, t2], be such that a ≤ x(t) ≤ b for all t ∈ I.

1. If (f ◦ x)x′ ∈ L1(I) then f ∈ L1(x(I)) and
∫ x(t2)

x(t1)

f(r)dr =
∫ t2

t1

f(x(t))x′(t)dt. (3.1)

2. If f ∈ L∞(x(I)) then (f ◦ x)x′ ∈ L1(I)and
∫ x(t2)

x(t1)

f(r)dr =
∫ t2

t1

f(x(t))x′(t)dt. (3.2)

3. If f ∈ L1(x(I)) and x is monotone then (f ◦ x)x′ ∈ L1(I)and
∫ x(t2)

x(t1)

f(r)dr =
∫ t2

t1

f(x(t))x′(t)dt. (3.3)

The preceding Lemma 3.1, part 1, allows us to establish a new result on
absolute continuity of compositions of absolutely continuous functions. We remark
that in general such compositions need not be absolutely continuous.

Lemma 3.2. Let I and J be nontrivial compact intervals.
Let F : I → R be an absolutely continuous function on I with F (I) ⊂ J and

let G : J → R be absolutely continuous on J . Then the following claims hold:

(i) If (G′ ◦F )F ′ ∈ L1(I) then G ◦F is absolutely continuous on I and moreover

(G ◦ F )′(t) = G′(F (t))F ′(t) for a. a. t ∈ I.

(ii) If (G ◦ F )′ ∈ L1(I) and the set

A = {t ∈ I : G is not differentiable at F (t) }
has zero Lebesgue measure, then G ◦ F is absolutely continuous on I and
moreover

(G ◦ F )′(t) = G′(F (t))F ′(t) for a. a. t ∈ I.

Proof. (i) Let t0 ∈ I. Since (G′ ◦ F )F ′ ∈ L1(I) we have from Lemma 3.1 that
∫ t

t0

G′(F (s))F ′(s)ds =
∫ F (t)

F (t0)

G′(s)ds for all t ∈ I.
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On the other hand G is absolutely continuous on J and then
∫ F (t)

F (t0)

G′(s)ds = G(F (t))−G(F (t0)) for all t ∈ I.

Therefore

G(F (t))−G(F (t0)) =
∫ t

t0

G′(F (s))F ′(s)ds for all t ∈ I,

and thus G ◦ F is absolutely continuous on I and

(G ◦ F )′(t) = G′(F (t))F ′(t) for a. a. t ∈ I.

(ii) If t ∈ I \A is such that F is differentiable at t then the chain rule ensures that
G ◦ F is differentiable at t and that

(G ◦ F )′(t) = G′(F (t))F ′(t).

Therefore (G′ ◦ F )F ′ = (G ◦ F )′ almost everywhere and then (G′ ◦ F )F ′ ∈ L1(I)
so the assumptions of part (i) of the lemma are satisfied. ¤

As an immediate consequence of Lemma 3.2 (ii) we obtain the following re-
sult, which has a fundamental importance in [6] where it was proven in a completely
different way.

Corollary 3.3. Let F : [a, b] → R be an absolutely continuous function on [a, b]
such that F (y) > 0 for almost all y ∈ [a, b].

If d
dy

√
F ∈ L1(a, b) then

√
F is absolutely continuous on [a, b].

We also shall need the following result on absolute continuity of inverse func-
tions. A simple proof for the next lemma, based on standard results left as exercises
5 (i) and 6 (b) in pages 332 and 333 of [9], is given in [2].

Lemma 3.4. Let I = [a, b] and J = [c, d] be a pair of nontrivial intervals and let
F : I → J be one-to-one and onto and absolutely continuous on I.

If F ′(t) 6= 0 for a.a. t ∈ I then F−1 : J → I is absolutely continuous on J
and

(F−1)′(r) =
1

F ′(F−1(r))
for a.a. r ∈ J.

4. Necessary conditions for existence of solutions

We start supposing that g : R→ R satisfies the following conditions:

(g0) g(y) > 0 for all y ∈ R.

(g1)
1
g
∈ L∞loc(R).
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Now assuming (g0) and (g1) we present the necessary conditions on f for
existence of solution. We define

G(y) :=
∫ y

0

t

g(t)
dt for all y ∈ R.

Remark 4.1. Under some additional conditions over g one could prove that the
equation x′′ = f(x)g(x′) would be equivalent to (G(x′))′ = f(x)x′. Such transfor-
mations have already been noted and used by several authors, see [3, 4].

For the convenience of the reader we follow the presentation of [6].

Proposition 4.2. Assume hypotheses (g0) and (g1).
If x : I → R is a solution of (1.1) then f|x(I) is Lebesgue-measurable.

Proof. Let O ⊂ R ∪ {−∞, +∞} be open. Since
1
g
∈ L∞loc(x

′(I)) from lemma 3.1,

part 2, we have that
x′′

g ◦ x′
∈ L1

loc(I) and in particular is measurable on I. Then

the set (
x′′

g ◦ x′

)−1

(O) = x−1(f−1(O))

is a measurable subset of I. Therefore x

((
x′′

g(x′)

)−1

(O)

)
= f−1(O) ∩ x(I) is

measurable because x is absolutely continuous (see [9, exercise 6, page 333]). ¤

Conditions (g0) and (g1) are stronger than those imposed on g in corollary
2.2. Regrettably, we cannot establish proposition 4.2 under the conditions of corol-
lary 2.2 for g. As an example note that x(t) = t, t ∈ R, solves (1.1) with x(0) = 0
and x′(0) = 1 if g(1) = 0, independently of the choice of f .

Proposition 4.3. Assume hypotheses (g0) and (g1).
If x : I → R is a solution of (1.1) then f ∈ L1

loc(x(I)) (in particular, f ∈
L1(x(I)) in case I is compact) and

G(x′(t2))−G(x′(t1)) =
∫ x(t2)

x(t1)

f(r)dr for all t1, t2 ∈ I. (4.1)

Proof. For a.a. t ∈ I we have

x′′(t)
g(x′(t))

x′(t) = f(x(t))x′(t),

and hence (f ◦ x)x′ ∈ L1
loc(I) because x′ is continuous on I and x′′

g(x′) ∈ L1
loc(I)

(as we have shown in the previous proof). In particular, (f ◦ x)x′ ∈ L1([t1, t2])
for every t1, t2 ∈ I, t1 < t2. Moreover, by proposition 4.2, we know that f :
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x(I) → R ∪ {−∞, +∞} is measurable, so we can apply the part 1 of lemma 3.1
and conclude that f ∈ L1(x([t1, t2])) and that

∫ t2

t1

x′′(s)
g(x′(s))

x′(s)ds =
∫ x(t2)

x(t1)

f(r)dr.

Finally since
x

g(x)
∈ L∞loc(R) applying lemma 3.1, part 2, to the left-hand side in

the previous relation we obtain
∫ t2

t1

x′′(s)
g(x′(s))

x′(s)ds =
∫ x′(t2)

x′(t1)

r

g(r)
dr = G(x′(t1))−G(x′(t2)),

and (4.1) holds. ¤

The following result follows immediately from (4.1) with t1 = 0 and the fact
that G(y) ≥ 0 for all y ∈ R.

Corollary 4.4. Assume hypotheses (g0) and (g1).
If x : I → R is a solution of (1.1) then

G(x1) +
∫ s

x0

f(r)dr ≥ 0 for all s ∈ x(I). (4.2)

Equation (4.1) establishes a fundamental identity that solutions must fulfill.
If x : I → R is a solution and we put t1 = 0 and t2 = t ∈ I in (4.1) we have

G(x′(t)) = G(x1) +
∫ x(t)

x0

f(r)dr for all t ∈ I,

therefore, if x′ ≥ 0 on I we can have the solution expressed as a solution of the
first-order problem

x′(t) = G|[0,+∞)
−1

(
G(x1) +

∫ x(t)

x0

f(r)dr

)
, x(0) = x0,

and if x′ ≤ 0 on I then x would satisfy

x′(t) = G|(−∞,0]
−1

(
G(x1) +

∫ x(t)

x0

f(r)dr

)
, x(0) = x0.

In general x′ changes sign on I and thus there is no reason to expect x to be a
solution of any one of the previous first-order problems. However we still can have
another necessary condition of existence in terms of G|[0,+∞)

−1 and G|(−∞,0]
−1 if

x is, respectively, down-up or up-down, in the sense of the following definition:

Definition 4.5. Let I be a nontrivial real interval and α ∈ C(I). We say that α is
down-up on I if for each compact K ⊂ x(I) there exist t1, t2 ∈ I such that t1 < t2,
x(t1) < x(t2) and K ⊂ x([t1, t2]).

Analogously, we say that α is up-down on I if for each compact K ⊂ x(I)
there exist t1, t2 ∈ I such that t1 < t2, x(t1) > x(t2) and K ⊂ x([t1, t2]).
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Remarks to Definition 4.5.

1. Nonconstant continuous mappings are down-up or up-down on their domains
(or both, as it happens with the sine function on R). To prove it let α ∈ C(I) be
nonconstant. We can choose sequences {tn} and {sn} in I with respective limits
t∞, s∞ ∈ R ∪ {−∞,+∞} and

lim
n→∞

α(tn) = inf
t∈I

α(t) ∈ [−∞, +∞)

and
lim

n→∞
α(sn) = sup

t∈I
α(t) ∈ (−∞,+∞].

If α attains a global minimum at some t0 ∈ I we simply take tn = t0 for all
n ∈ N, and we can proceed similarly if α attains a global maximum. Now it only
remains to check whether t∞ < s∞ or t∞ > s∞ to deduce that α is, respectively,
down-up or up-down (note that many possible choices of the sequences {tn} and
{sn} are possible, but note also that a given function might be both down-up and
up-down).

2. If a mapping α ∈ C1(I) is down-up on I then α(I) = α(α′−1([0, +∞))), i.e.
every point in α(I) is reached at some t ∈ I such that α′(t) ≥ 0. To prove it
let s ∈ α(I) be fixed, consider the compact K = {s}, and let t1, t2 ∈ I be such
that t1 < t2, x(t1) < x(t2) and K ⊂ x([t1, t2]). If x(t1) < s then x(t∗) = s and
x′(t∗) ≥ 0 for

t∗ = sup{t ∈ (t1, t2] : x(r) < s for all r ∈ [t1, t]},
and if x(t2) > s then x(t∗) = s and x′(t∗) ≥ 0 for

t∗ = inf{t ∈ [t1, t2) : x(r) > s for all r ∈ [t, t2]}.
Analogously, if α is up-down on I then α(I) = α(α′−1((−∞, 0])).

3. Nondecreasing (nonconstant) continuously differentiable mappings are down-up
on their domains, and nonincreasing ones are up-down.

4. (Down-up/up-down solutions of (1.1)) Every solution of (1.1) with x1 > 0 is
increasing on a neighborhood of t = 0, therefore it is down-up on a neighborhood
of t = 0. An analogous remark is valid for up-down solutions in connection with
x1 < 0. Therefore, from the local point of view, solutions of (1.1) can only be
down-up when x1 > 0 and can only be up-down when x1 < 0.

However things are not so easy for noncontinuable solutions, as some prob-
lems (1.1) with x1 > 0 may have up-down solutions that are not down-up and that
cannot be extended to down-up solutions, or simply that cannot be extended at
all. As an example, note that

x(t) =

{
sin t, if t ≤ π,√

2tg
(
− t−π√

2

)
, if π ≤ t < π + π

√
2

2 ,
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is a noncontinuable and up-down solution of (1.1) with x0 = 0, x1 = 1, f(x) = −x,
and

g(y) =
{ −y, if y ≤ −1,

1, if −1 < y.

To prove our next proposition we will need the following results on Lebesgue
measure in R, which will be denoted here and henceforth by µ. The second part
of the lemma establishes that the set of the critical values of a everywhere differ-
entiable function is null measurable.

Lemma 4.6. Let α : [a, b] → R be a given mapping.

1. [9, lemma 6.88] Suppose that M ⊂ (a, b) is measurable and that there exists
L ≥ 0 such that D+α(x) ≤ L and D−α(x) ≥ −L for all x ∈ M . Then
µ(α(M)) ≤ Lµ(M).

2. If α is differentiable at every point of [a, b], then µ(α(α′−1({0}))) = 0.

Proof of part 2. Apply the first part to M = α′−1({0}) \ {a, b} with L = 0.

Next we establish our final necessary condition for the existence of noncon-
stant solutions. For simplicity we will use the following notation: G−1

+ = G−1
|[0,+∞)

and G−1
− = G−1

|(−∞,0].

Proposition 4.7. Assume hypotheses (g0) and (g1) hold.
If x : I → R is a nonconstant solution of (1.1) then the mapping

F (s) := G(x1) +
∫ s

x0

f(r)dr for all s ∈ x(I),

is well defined and
F (s) > 0 for almost all s ∈ x(I). (4.3)

Moreover, if x is down-up on I then

max{1, (g ◦G−1
+ ◦ F )|f |}

G−1
+ ◦ F

∈ L1
loc(x(I)), (4.4)

and for every t1, t2 ∈ I with t1 ≤ t2 we have
∫ x(t2)

x(t1)

dr

G−1
+ (F (r))

≤ t2 − t1; (4.5)

and if, on the other hand, x is up-down on I then (4.4) is valid with G−1
+ replaced

by G−1
− and for every t1, t2 ∈ I with t1 ≤ t2 we have

∫ x(t2)

x(t1)

dr

G−1
− (F (r))

≤ t2 − t1. (4.6)
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Proof. By (4.2) we know that F (s) = G(x1) +
∫ s

x0
f(r)dr ≥ 0 for all s ∈ x(I).

Let us suppose that x is down-up on I and define the measurable and non-
negative mapping φ : x(I) → [0,+∞] as

φ(s) :=
1

G−1
+ (F (s))

, if F (s) > 0,

:= +∞, if F (s) = 0.

Note that φ is well-defined: since x is down-up, for each s ∈ x(I) there exists
t ∈ I such that x(t) = s and x′(t) ≥ 0, therefore (4.1) with t1 = 0 and t2 = t is
equivalent to

G|[0,∞)(x′(t)) = G(x1) +
∫ s

x0

f(r)dr = F (s),

in particular, G−1
+ (F (s)) is defined.

Let t1, t2 ∈ I be such that t1 < t2 and x(t1) < x(t2), and denote J = [t1, t2].
We are going to prove that

φ and the product |(g ◦G−1
+ ◦ F )fφ| belong to L1(x(J)). (4.7)

Elementary arguments show that every point in x(J) is attained at some
point in J with nonnegative derivative, i.e.

x(J) = x(J ∩ x′−1([0, +∞))) = x(J ∩ x′−1({0})) ∪ x(J ∩ x′−1(0,+∞)),

and since, by virtue of the second part of lemma 4.6, we have

µ(J ∩ x(x′−1({0}))) = 0,

then (4.7) is equivalent to

φ, |(g ◦G−1
+ ◦ F )fφ| ∈ L1(x((t1, t2) ∩ x′−1(0, +∞))), (4.8)

as we are only removing null-measure subsets from x(J).
The set (t1, t2)∩x′−1(0,+∞) is open, thus it can be expressed as a countable

union of pairwise disjoint intervals, say In = (an, bn), n ∈ N.
Let n ∈ N be fixed. By definition of In and (4.1) with t1 replaced by 0, for

all t ∈ In we have

0 < x′(t) = G−1
+

(
G(x1) +

∫ x(t)

x0

f(r)dr

)
=

1
φ(x(t))

, (4.9)

and therefore (φ ◦x)x′ = 1 on In, so we can apply the first part of lemma 3.1 with
f replaced by φ and I by [an, bn], to have that φ ∈ L1(x(an), x(bn)) and

∫ x(bn)

x(an)

φ(r)dr =
∫ bn

an

φ(x(s))x′(s)ds = bn − an.
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Hence we have
∫

x(x′−1(0,+∞)∩(t1,t2))

φ(r)dr =
∫

∪x(In)

φ(r)dr

≤
∞∑

n=1

∫ x(bn)

x(an)

φ(r)dr =
∞∑

n=1

(bn − an)

≤ t2 − t1 < +∞,

then we can apply the first part of lemma 3.1 with f replaced by φ and I by J , to
have φ ∈ L1(x(J)) and

∫ x(t2)

x(t1)

φ(r)dr ≤ t2 − t1. (4.10)

Note that φ ∈ L1(x(J)) implies that (4.3) holds with x(I) replaced by x(J),
and then (4.10) is equivalent to (4.5) (note that (4.5) is trivial if x(t1) ≥ x(t2)).

To show that h = |(g ◦G−1
+ ◦F )fφ| satisfies (4.8), we first use (4.9) to ensure

that for each n ∈ N the following relations hold on In:

(h ◦ x)x′ = g(G−1
+ (F (x)))|f(x)|φ(x)x′ = g(x′)|f(x)| = |x′′| ∈ L1(In),

and then the first part of lemma 3.1 implies h ∈ L1(x(In)) and
∫

x(x′−1(0,+∞)∩(t1,t2))

h(r) =
∫

∪x(In)

h(r)dr

≤
∞∑

n=1

∫ x(bn)

x(an)

h(r)dr

=
∞∑

n=1

∫ bn

an

|x′′(s)|ds ≤
∫ t2

t1

|x′′(s)|ds < +∞.

Note that, since x is down-up on I, each compact K ⊂ x(I) is contained in
some x(J) with J as above, and thus max{1, g(G−1(F (·)))|f |}φ ∈ L1

loc(x(I)). This
implies (4.3) and (4.4).

Finally, if x is up-down on I, then v(t) := x(−t) for all t ∈ −I := {−t : t ∈ I}
is down-up on −I and it is a solution of (1.1) with g replaced by g̃(y) := g(−y) for
all y ∈ R and x1 replaced by −x1. Therefore (4.3), (4.4) and (4.5) are valid with
x1 replaced by −x1, x(I) replaced by v(−I), G replaced by

G̃(y) :=
∫ y

0

r

g̃(r)
dr for all y ∈ R,

g replaced by g̃, and G−1
+ replaced by G̃−1

|[0,+∞). Now it suffices to take into account

that x(I) = v(−I), G̃(y) = G(−y) for all y ∈ R and G̃−1
|[0,+∞) = −G−1

− to conclude
that (4.4) with G−1

+ replaced by G−1
+ and (4.6) hold. ¤
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5. Sufficient conditions for existence of solutions

Next we prove that the previous necessary conditions for existence of nonconstant
solutions are also sufficient. We shall refer to the time maps

τsgn(x1) : y ∈ J 7−→ τsgn(x1)(y) :=
∫ y

x0

dr

Gsgn(x1)
−1

(
G(x1) +

∫ r

x0
f(s)ds

) , (5.1)

where the notation sgn(z) means + when z > 0, − when z < 0, and can be either
+ or − when z = 0.

Theorem 5.1. Assume hypotheses (g0) and (g1).
The problem (1.1) has the constant solution if and only if f(x0) = 0 = x1.
Moreover, the following statements are pairwise equivalent for a given non-

trivial interval J such that x0 ∈ J :

(i) f ∈ L1
loc(J), G(x1) +

∫ y

x0
f(s)ds > 0 for almost all y ∈ J , and

max{1, g
(
Gsgn(x1)

−1
(
G(x1) +

∫ ·
x0

f(s)ds
))
|f |}

Gsgn(x1)
−1

(
G(x1) +

∫ ·
x0

f(s)ds
) ∈ L1

loc(J). (5.2)

(ii) The problem (1.1) has a strictly monotone solution x implicitly given by
∫ x(t)

x0

dr

Gsgn(x1)
−1

(
G(x1) +

∫ r

x0
f(s)ds

) = t for all t ∈ τsgn(x1)(J), (5.3)

which increases if sgn(x1) = + and decreases if sgn(x1) = −.
(iii) The problem (1.1) has a nonconstant solution x : I → R with x(I) = J and

sgn(x1)x is down-up on I.

Proof. Obviously, x(t) = x0 for all t ∈ R solves (1.1) if f(x0) = 0 = x1, and only
in that case.

Let us show that (i) implies (ii). Assume first that sgn(x1) = − and consider
the mapping τ− defined in (5.1). The assumptions imply that τ− is absolutely
continuous over each compact subinterval of J and that τ−′(y) < 0 a.e. on J .
Therefore lemma 3.4 ensures that it has a strictly decreasing inverse x = τ−−1 :
τ(J) → R which is absolutely continuous over each compact subinterval of τ−(J).
Furthermore τ−(x0) = 0 and thus x(0) = x0.

Lemma 3.4 also ensures that

x′(t) = G−−1

(
G(x1) +

∫ x(t)

x0

f(s)ds

)
for a.a. t ∈ τ−(J), (5.4)

and since the right-hand side is continuous then x′ is continuous as well and
equality holds everywhere in (5.4). In particular x′(0) = x1.
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Let us show now that x′ is absolutely continuous on each compact subinterval
of τ−(J). Denote F (s) = G(x1) +

∫ s

x0
f(r)dr for s ∈ J . Then

(((G−−1)′ ◦ F )F ′)(s) =
g(G−−1(F (s)))f(s)

G−−1(F (s))
for a.a. s ∈ J

and since by hypothesis it belongs to L1
loc(J), lemma 3.2, (i), with [a, b] replaced by

any compact subinterval of J guarantees that G−−1 ◦ F is absolutely continuous
on such a compact interval. Now the absolute continuity of x′ follows from the
relation x′ = (G−−1 ◦ F ) ◦ x, the monotonicity of x and [7, theorem 9.3].

Theorem 6.93 in [9] ensures the possibility of using the chain rule in (5.4) to
have x′′(t) = f(x(t))g(x′(t)) for a.a. t ∈ τ−(J) (we note that x′ 6= 0 a.e.). Hence x
is an decreasing solution of (1.1).

In case sgn(x1) = + it suffices to replace τ− by τ+.
Now (ii) trivially implies (iii), and (iii) implies (i) by virtue of propositions

4.2, 4.3 and 4.7. ¤

Remark 5.2. Existence of a solution of (1.1) with x1 ≥ 0 and range J implies the
existence of a down-up solution with range J when g is even.

To prove it let x : I → R be a solution of (1.1) with x1 ≥ 0 which is not
down-up and we will show that there is a down-up solution with the same range.
First since x must be up-down, there exists t0 ∈ I such that x(t0) = x0 and
x′(t0) = −x1. On the other hand, since x is not down-up there exists t1 ∈ I such
that x′(t1) = 0. Let v(t) = x(2t1 − t) for t ∈ Î := 2t1 − I. Since g is even, v is a
solution of the differential equation, x(I) = v(Î), and

v(2t1 − t0) = x0 and v′(2t1 − t0) = x1,

so, up to translation in time, v and x are solutions of the same problem having
the same range.

Similarly, the existence of solutions with x1 ≤ 0 and range J implies the
existence of up-down solutions with the same range when g is even.

The previous remark, and the fact that G−−1 = −G+
−1 when g is even,

allow us to prove the following corollary of theorem 5.1.

Corollary 5.3. Assume hypotheses (g0) and (g1).
If g is even then the following statements are pairwise equivalent for a given

nontrivial interval J such that x0 ∈ J :

(i) f ∈ L1
loc(J), G(x1) +

∫ y

x0
f(s)ds > 0 for almost all y ∈ J , and

max{1, g
(
G+

−1
(
G(x1) +

∫ ·
x0

f(s)ds
))
|f |}

G+
−1

(
G(x1) +

∫ ·
x0

f(s)ds
) ∈ L1

loc(J). (5.5)
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(ii) The problem (1.1) has a strictly monotone solution x implicitly given by
∫ x(t)

x0

dr

G+
−1

(
G(x1) +

∫ r

x0
f(s)ds

) = sgn(x1)t for all t ∈ sgn(x1)τ+(J), (5.6)

which increases if sgn(x1) = + and decreases if sgn(x1) = −.
(iii) The problem (1.1) has a nonconstant solution x : I → R with x(I) = J .

Remark 5.4. Taking g ≡ 1 the preceding corollary reduces to [6, theorem 3.1]

If we allow g to vanish the search of necessary conditions for the existence
of solution of equation (1.1) seems to be much more difficult, as we already have
pointed out. On the other hand a detailed revision of “(i) =⇒ (ii)” in the proof of
theorem 5.1 shows that we can obtain the same conclusion under weaker assump-
tions over g, as we present in the following theorem.

Theorem 5.5. Suppose that the following assumptions hold:

(h1) g(y) > 0 for a.a. y ∈ R and
·

g(·) ∈ L1
loc(R),

(h2) f ∈ L1
loc(J), G(x1) +

∫ s

x0
f(r)dr > 0 for almost all s ∈ J , and

max{1, g
(
Gsgn(x1)

−1
(
G(x1) +

∫ ·
x0

f(s)ds
))
|f |}

Gsgn(x1)
−1

(
G(x1) +

∫ ·
x0

f(s)ds
) ∈ L1

loc(J).

Then (1.1) has a strictly monotone solution x implicitly given by
∫ x(t)

x0

dr

Gsgn(x1)
−1

(
G(x1) +

∫ r

x0
f(s)ds

) = t for all t ∈ τ sgn(x1)(J).

6. Uniqueness, extremality and multiplicity

Whenever x1 = 0, Theorem 5.1 (i) implies the existence of an increasing solu-
tion (considering sgn(0) = +) and a decreasing one (considering sgn(0) = −). If
f(x0) = 0 we would also have the constant solution x(t) ≡ x0. Thus, if x1 = 0 we
cannot expect in general to have local uniqueness for problem (1.1). However if
x1 6= 0 the solution given by Theorem 5.1 is locally unique.

Theorem 6.1. Assume hypotheses (g0) and (g1).
If x : I → R is a solution of (1.1) with x1 6= 0, then x is the unique solution

of (1.1) on the connected component of {t ∈ I : x′(t) 6= 0} that contains 0 (we shall
denote it by I+).

Proof. Let x : I → R be a nonconstant solution of (1.1). Then sgn(x1)x is down-up
in I+ and Theorem (5.1) (i) holds for J+ = x(I+). Formula (4.1) with t1 = 0 and
t2 = t ∈ I+ gives

0 < G (x′(t)) = G(x1) +
∫ x(t)

x0

f(r) dr for all t ∈ I+; (6.1)
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hence
x′(t)

G−1
sgn(x1)

(
G(x1) +

∫ x(t)

x0
f(r) dr

) = 1 for all t ∈ I+,

and Lemma 3.1 (1) ensures that integration between 0 and t ∈ I+ gives

τsgn(x1) (x(t)) = t for all t ∈ I+. (6.2)

In particular, τsgn(x1) (x (I+)) = I+.

Let y : Iy → R be another solution of (1.1), such that I+ ∩ Iy is a nontrivial
interval. If we prove that y′(t) 6= 0 for all t ∈ I+∩Iy, we obviously have x(t) = y(t)
in I+ ∩ Iy, since y(t) would satisfy τsgn(x1) (y(t)) = t.

Towards a contradiction, assume that there exists an interval [a, b] ⊂ I+∩ Iy,
such that |y′(t)| > 0 for all t ∈ (a, b), and a = y′(b) = 0, or y′(a) = b = 0. Let us
consider the first case since the other one may be treated analogously.

By (4.1), we have

0 = G(y′(b)) = G(x1) +
∫ y(b)

x0

f(r) dr,

which implies, by (6.1), that y(b) /∈ x(I+).
Using (4.1) again, we deduce that, for all t ∈ [0, b),

y′(t)

G−1
sgn(x1)

(
G(x1) +

∫ y(t)

x0
f(r) dr

) = 1,

and integrating between 0 and b, we get

τsgn(x1) (y (b)) = b

and therefore, τsgn(x1)(y(b)) ∈ I+ = τsgn(x1)(x(I+)). By increasingness of τsgn(x1),
we get that y(b) ∈ x(I+), which is a contradiction. ¤

Combining the previous result with Theorem 5.1, we obtain an existence and
uniqueness result.

Corollary 6.2. Assume hypotheses (g0) and (g1) and moreover suppose that x1 6= 0
and Theorem 5.1(i) holds.

Then (5.3) defines the unique solution of (1.1) on τsgn(x1)(J+), where J+ is
the connected component that contains x0 of

{
y ∈ J : G(x1) +

∫ y

x0

f(r) dr > 0
}

.

Proof. Theorem (5.1) guarantees that (5.3) defines a solution. On the other hand,
the set τsgn(x1)(J+) is precisely the connected component which contains 0 of the
set of timevalues where the derivative does not vanish, thus we get the conclusion
applying Theorem 6.1. ¤
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In case g is even Corollary 6.2 can be applied to deduce the following necessary
and sufficient condition for global uniqueness of (5.3) on τsgn(x1)(J) whenever
x1 6= 0.

Theorem 6.3. Assume hypotheses (g0) and (g1) and moreover suppose that g is
an even function, x1 6= 0 and Theorem 5.1(i) holds.

Then a necessary and sufficient condition for (5.3) to define the unique so-
lution of (1.1) on the interval τsgn(x1)(J) is

G(x1) +
∫ y

x0

f(r) dr > 0 for all y ∈ J.

Proof. The sufficient condition is an immediate consequence of corollary 6.2.
To establish the necessity, assume by contradiction that there is some y0 ∈ J

such that G(x1) +
∫ y0

x0
f(r) dr = 0, and let t0 be such that t0 = τsgn(x1)(y0). If x

denotes the solution given by (5.3), relation (4.1) gives

G(x′(t0)) = G(x1) +
∫ x(t0)

x0

f(r) dr = G(x1) +
∫ y0

x0

f(r) dr = 0,

and therefore since g is even one can construct a different solution by reflecting the
branch of the graph of x which passes through (t0, x0) by symmetry with respect
to the line t = t0. This is a contradiction with the uniqueness assumption. ¤

Now we study the case x0 = 0.

Proposition 6.4. Assume hypotheses (g0) and (g1) and suppose that x1 = 0 =
f(x0).

Then (1.1) has only the constant solution if and only if Theorem 5.1 (i) does
not hold.

A remarkable consequence of Proposition 6.4 is the following corollary.

Corollary 6.5. Assume hypotheses (g0) and (g1) and suppose that x1 = 0 = f(x0).
Then (1.1) has only the constant solution provided that f is nonincreasing on

a neighborhood of x0.

Proof. Since G(x1) = 0 we have G(x1) +
∫ y

x0
f(r) dr ≤ 0 in a neighborhood of x0,

which means that (5.1) (i) does not hold. ¤

As we stated in the beginning of this section, if x1 = 0 the problem (1.1)
may have more than one solution. But in this situation, the two solutions given
by Theorem 5.1 (considering sgn(0) = + and sgn(0) = −) are extremal in some
sense on each side of t = 0. Let us denote these solutions by

x±(t) = τ−1
± (t), for all t ∈ τ±(J).

Proposition 6.6. Assume hypotheses (g0) and (g1) and suppose that x1 = 0.
The following assertions hold.
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(i) If x : I → R is a down-up solution of (1.1) then:
x(t) ≤ x+(t) for all t ∈ I ∩ τ+(J) ∩ [0, +∞), and
x(t) ≥ x+(t) for all t ∈ I ∩ τ+(J) ∩ (−∞, 0].

(ii) If x : I → R is an up-down solution of (1.1) then:
x(t) ≥ x−(t) for all t ∈ I ∩ τ−(J) ∩ [0, +∞), and
x(t) ≤ x−(t) for all t ∈ I ∩ τ−(J) ∩ (−∞, 0].

(iii) If g is even and x : I → R is any solution of (1.1) then the conclusions of (i)
and (ii) follow.

Proof. We shall prove part (i). If x is a down-up solution by (4.5) we have for all
t ∈ I ∩ τ+(J) ∩ [0, +∞) that

∫ x(t)

x0

dr

G−1
+ (F (r))

= τ+(x(t)) ≤ t,

or equivalently, x(t) ≤ x+(t). On the other hand, for all t ∈ I ∩ τ+(J) ∩ (−∞, 0],
we have τ+(x(t)) ≥ t, which implies x(t) ≥ x+(t).

Part (ii) admits an analogous treatment and finally for part (iii) it suffices to
note that for an even g we have that G−1

+ = −G−1
− . ¤

Now let us present necessary and sufficient conditions which guarantee that
all the nontrivial solutions of (1.1) with x1 = 0 are exactly the ones given in (5.3)
on each side of t = 0.

Theorem 6.7. Assume hypotheses (g0), (g1) and suppose that g is even, Theorem
5.1(i) holds, x1 = 0 and x0 ∈ Int(J).

Then the following assertions are pairwise equivalent:

(i) For all y ∈ Int(J) \ {x0}, we have
∫ y

x0

f(r) dr > 0. (6.3)

(ii) If x : [0, T ] → R is a solution of (1.1) which is is not constant on [0, δ], for all
δ ∈ (0, T ], then either x = x+ on [0, T ]∩ τ+(J), or x = x− on [0, T ]∩ τ−(J).

(iii) For all t ∈ τ± (Int(J)) ∩ (0, +∞), we have x′±(t) 6= 0.

Proof. (i) ⇒ (ii) Let x : [0, T ] → R be a solution of (1.1) which is is not constant
on [0, δ], for all δ ∈ (0, T ], and let T̂ ∈ (0, T ] be such that x(t) ∈ Int(J) for all
t ∈ [0, T̂ ).

We claim that x′(t) 6= 0, for all t ∈ (0, T̂ ). Towards a contradiction, assume
that there exists some t0 ∈ (0, T̂ ) such that x′(t0) = 0. Hence (4.1) yields

0 = G(x′(t0)) =
∫ x(t0)

x0

f(r) dr,

and, using (6.3) and the fact that x(t0) ∈ Int(J), we have that x(t0) = x0. Now,
since x is not constant on [0, t0], there exists t1 ∈ (0, t0) such that x(t1) 6= x0 and
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x′(t1) = 0. Then

0 = G(x′(t1)) =
∫ x(t1)

x0

f(r) dr,

and since x(t1) ∈ Int(J) \ {x0}, we have a contradiction with (6.3).
There are now two possibilities: either x′ > 0 on (0, T̂ ), or x′ < 0 on (0, T̂ ).
If x′ > 0 on (0, T̂ ), then (4.1) implies that

x′(t)

G−1
+

(∫ x(t)

x0
f(s) ds

) = 1 on (0, T̂ ),

so we can integrate between 0 and t ∈ (0, T̂ ], to conclude that

τ+(x(t)) = t for all t ∈ [0, T̂ ].

Thus we have proven that x(t) = x+(t) whenever t ≥ 0 and x(t) ∈ Int(J). Since
x+(t) = τ−1

+ (t) ∈ Int(J) for all t ∈ τ+ (Int(J)), we conclude that x = x+ on
τ+ (Int(J))∩ [0, T ], and, by continuity of x and x+, that x = x+ on τ+(J)∩ [0, T ].

On the other and, if x′ < 0 on (0, T̂ ), then we obtain

τ−(x(t)) = t for all t ∈ [0, T̂ ],

and we can conclude in a similar way that x = x− on τ−(J) ∩ [0, T ].

(ii) ⇒ (iii) Assume, reasoning by contradiction, that there exists some t0 ∈
τ+ (Int(J)) ∩ (0,+∞) such that x′+(t0) = 0. Extending the restriction of x+ to
[0, t0] by symmetry with respect to t = t0, we obtain a new nonconstant solution,
which is different from x+ because it is not monotone on τ+(J), and different from
x− because it is increasing on [0, t0], which is a contradiction with (ii). We get a
similar contradiction if we assume that x′−(t0) = 0 for some t0 ∈ τ− (Int(J)) ∩
(0, +∞)

(iii) ⇒ (i) For each t ∈ τ+ (Int(J)) ∩ (0, +∞), we have

0 < G(x′+(t)) =
∫ x+(t)

x0

f(r) dr,

and therefore
∫ y

x0
f(r) dr > 0 for all y ∈ x+ (τ+ (Int(J)) ∩ (0,+∞)) = Int(J) ∩

(x0, +∞). An analogous argument with x− yields
∫ y

x0
f(r) dr > 0 for all y ∈

Int(J) ∩ (−∞, x0). ¤
Remark 6.8. An analogous result holds for solutions x : [−T, 0] → R, with T > 0.

We have the following similar result for the case in which x0 the minimum
of J , and J cannot be extended. The similar case with x0 being the maximum of
J can be treated analogously.

Theorem 6.9. Assume hypotheses (g0), (g1) and suppose that g is even.
Let x1 = 0 and suppose that there exists ε > 0 such that Theorem 5.1 (i)

holds for J = [x0, x0 + ε) and not for (x0 − ρ, x0 + ε) for any ρ > 0. Then the
following assertions are pairwise equivalent:
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(i) For all y ∈ (x0, x0 + ε), we have
∫ y

x0

f(r) dr > 0. (6.4)

(ii) If x : [0, T ] → R is a solution of (1.1) which is not constant on [0, δ], for all
δ ∈ (0, T ], then x = x+ on [0, T ] ∩ τ(J).

(iii) For all t ∈ τ+ (x0, x0 + ε) ∩ (0, +∞), we have x′+ > 0.

Proof. To prove that (i) implies (ii), let x : [0, T ] → R be a solution of (1.1) which
is not constant on [0, δ], for all δ ∈ (0, T ]. Note that x(t) ≥ x0 for all t ∈ [0, T ],
since otherwise Theorem 5.1 implies that (5.1 (i)) holds for (mint∈[0,T ] x(t), x0],
which is a contradiction. Thus there exists T̂ ∈ (0, T ] such that x(t) ∈ J for all
t ∈ [0, T̂ ]. Now it suffices to follow the proof of Theorem 6.7 to show that x′ 6= 0 on
(0, T̂ ). Since x ≥ x0 on [0, T ], we deduce that x′ > 0 on (0, T̂ ), and obtain x = x+

on [0, T ] ∩ τ(J). The remaining parts of the proof follow analogously to the ones
in Theorem 6.7. ¤

We show now that, under stronger assumptions than those in Theorem 5.1
(i), we can obtain solutions in the case x1 = 0 which are non constant or monotone
on [0, δ] and on [−δ, 0], for each sufficiently small δ > 0.

Proposition 6.10. Assume hypotheses (g0), (g1) and suppose that g is even.
Let x1 = 0 and suppose that f and g satisfy Theorem 5.1 (i) with J =

[x0, x0 + ε] for some ε > 0.
Moreover assume that f ∈ L∞(J) and that (yn)n∈N is a decreasing sequence

in J which converges to x0 such that
∫ yn

x0
f(r) dr = 0 for all n ∈ N, and

∞∑
n=1

∫ yn

x0

dr

G−1
+

(∫ r

x0
f(s) ds

) < +∞.

Then problem (1.1) with x1 = 0 has a solution which is not constant or monotone
on [0, δ] and on [−δ, 0], for all δ > 0 small enough.

Proof. For each n ∈ N let xn be the solution implicitly given by

∫ xn(t)

x0

dr

G−1
+

(∫ r

x0
f(s) ds

) = t, for t ∈

0, tn :=

∫ yn

x0

dr

G−1
+

(∫ r

x0
f(s) ds

)

 . (6.5)

Since x′n(tn) = 0, xn can be extended to the interval [0, 2tn] by symmetry
with respect to the line t = tn, and we find a solution x̃n defined on [0, 2tn] which
satisfies

x̃n(0) = x0 = x̃n(2tn), and x̃′n(0) = 0 = x̃′n(2tn).

Since our problem is autonomous and g is even, the translations x̃n(· − τ),
for any τ ∈ R, are again solutions on [τ, τ + 2tn]. Thus a new solution x :
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[0, T:= 2
∑∞

n=1 tn]→R can be defined as follows:

x(t) =





x̃1(t), t ∈ [0, 2t1],

x̃n

(
t− 2

∑n−1
k=1 tk

)
, t ∈

(
2

∑n−1
k=1 tk, 2

∑n
k=1 tk

]
,

x0, t = 2
∑∞

k=1 tk.

Let us show that x is in fact a solution. The continuity of x is obvious for t ∈ [0, T ),
and to prove the continuity at t = T , we just need to take into account the fact
that

x0 ≤ x(t) ≤ yn, for all t ∈
[
2

n−1∑

k=1

tk, 2
n∑

k=1

tk

]
, for each n ∈ N.

On each interval
[
2

∑n−1
k=1 tk, 2

∑n
k=1 tk

]
it it obvious that x′ is absolutely continu-

ous, and that the differential equation is satisfied. Let us show that x′ ∈ AC([0, T ]).
By virtue of (4.1), we have

G (x′(t)) =
∫ x(t)

x0

f(r) dr, for all t ∈
[
2

n−1∑

k=1

tk, 2
n∑

k=1

tk

]
,

and since, by construction, x′ is continuous on [0, T ), we have

G (x′(t)) =
∫ x(t)

x0

f(r) dr, for all t ∈ [0, T ). (6.6)

Thus limt→T− x′(t) = 0, and since x is continuous at t = T , we have x′(T ) = 0.
On the other hand, the mapping

∫ ·
x0

f(r) dr is lipschitzian on [x0, y1] be-
cause f ∈ L∞(x0, y1), and therefore, [7, Theorem 9.3] together with (6.6) yields
G (x′(t)) ∈ AC[0, T ]. Finally, an application of Lemma 3.4 gives x′ ∈ AC[0, T ].

To have a solution y in the conditions of the statement, we only need to
extend x by symmetry with respect to the line t = T , say x̃ : [0, 2T ] → R, and
consider the translation y(t) = x̃(t + T ), for t ∈ [−T, T ]. ¤

7. Continuation and periodic solutions

Throughout this section we shall assume that Theorem 5.1 holds, and therefore,
the problem (1.1) has strictly monotone solutions, given by (5.3). We are going to
study the continuation of increasing solutions for the case x1 ≥ 0 and on the right
side of t = 0. The remaining situations admit an analogous study.

First we need to have solutions defined on the right side of t = 0, so we
shall assume that J ∩ [x0, +∞) is a nontrivial interval. In this case Theorem 5.1
guarantees that (1.1) with x1 ≥ 0 has a solution given by

x+(t) = τ−1
+ (t) for all t ∈ τ(J), (7.1)

which is increasing on τ+(J) and τ+(J) ∩ [x0, +∞) is a nontrivial interval.
We have several possibilities:
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(i) Solution (7.1) is defined and unbounded on [0,+∞), provided that
[x0,+∞) ⊂ J and τ+ ([x0,+∞)) = [0, +∞), that is

∫ +∞

x0

dr

G−1
+

(
G(x1) +

∫ r

x0
f(s) ds

) = +∞.

(ii) Solution (7.1) is defined and bounded on [0,+∞), provided that
J ∩ [x0,+∞) = [x0, x̂0) for some x̂0 > x0 such that

lim
x→x̂−0

τ+(x) = +∞,

that is ∫ x̂0

x0

dr

G−1
+

(
G(x1) +

∫ r

x0
f(s) ds

) = +∞.

(iii) Solution (7.1) blows up at finite time, provided that [x0, +∞) ⊂ J and
τ+ ([x0,+∞)) is bounded. If we define T := sup τ+(J) ∩ [0,+∞) then we
have that limt→T− x+(t) = +∞. Note that τ+ ([x0, +∞)) is bounded if and
only if ∫ +∞

x0

dr

G−1
+

(
G(x1) +

∫ r

x0
f(s) ds

) < +∞.

(iv) Solution (7.1) stops at finite time and at finite position, provided that J ∩
[x0,+∞) and τ+(J) ∩ [0, +∞) are bounded. Defining S := sup J ∩ [x0,+∞)
and T := sup τ+(J) ∩ [0, +∞), we have

lim
t→T−

x+(t) = S,

and the solution cannot be extended further by means of (7.1) on the right
side of T because τ+ is not defined on the right side of S.

Proposition 7.1. Assume hypotheses (g0) and (g1) and suppose that Theorem 5.1(i)
holds and that J ∩ [x0, +∞) is a nontrivial interval.

Then solution (7.1) can be continued over [0, +∞) as a constant on [T, +∞)
for some T ∈ τ+(J) ∩ [0, +∞) if and only if the set

C =
{

y0 ∈ J ∩ [x0,+∞) : f(y0) = 0 and G(x1) +
∫ y0

x0

f(r) dr = 0
}
6= ∅

Proof. We only need to define x(t) by (7.1) for t ∈ [0, τ+(y0)), and x(t) = y0 for
t ≥ τ+(y0), where y0 is an element of C. Differentiability at t = τ+(y0) follows
from G(x1) +

∫ y0

x0
f(r) dr = 0.

The converse is a trivial consequence of (4.1). ¤

Proposition 7.2. Assume hypotheses (g0) and (g1) and suppose that g is an even
function, that Theorem 5.1(i) holds and that J ∩ [x0, +∞) is a nontrivial interval.

Suppose, moreover, that there exist y0 ∈ J ∩ [x0, +∞) and y1 ∈ J ∩ (−∞, y0),
such that G(x1) +

∫ yi

x0
f(r) dr = 0, for i = 0, 1.
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Then problem (1.1) with x1 ≥ 0 has a solution on [x0, +∞), which is increas-
ing on [0, τ+(y0)) and periodic on [τ+(y0), +∞), of period 2(τ+(y0)− τ+(y1)).

Proof. First note that assumptions imply that the solution x+ given by (7.1)
satisfies x′+(τ+(y1)) = x′+(τ+(y0)) = 0.

Consider the restriction of x+ to the interval τ+(J)∩(−∞, τ+(y0)] and extend
it by symmetry with respect to the line t = τ+(y0). Now let x̃ be the restriction of
the resulting solution to [0, 2τ+(y0)−τ+(y1)] and note that x̃′(2τ+(y0)−τ+(y1)) =
x′+(y1) = 0. Now take the restriction of x̃ to the interval [τ+(y0), 2τ+(y0)−τ+(y1)],
extend it by symmetry with respect to the line t = 2τ+(y0) − τ+(y1) over the
interval [2τ+(y0)−τ+(y1), 3τ+(y0)−2τ+(y1)], and define x̃ like this on this interval.
Finally, iterating this construction, we get the result. ¤
Theorem 7.3. Assume hypotheses (g0) and (g1) and suppose that g is an even
function.

Let f : Dom(f) ⊂ R→ R ∪ {−∞,+∞} and m,M ∈ R be such that m < M .
Then the following assertions are pairwise equivalent:

(i) x′′ = f(x)g(x′) has a solution for wich m and M are critical values.
(ii) f ∈ L1(m,M),

∫ y

m
f(r) dr > 0 for almost all y ∈ [m,M ],

∫ M

m
f(r) dr = 0,

and
max

{
1, g

(
G−1

+

(∫ ·
m

f(s) ds
)) |f |}

G−1
+

(∫ ·
m

f(s) ds
) ∈ L1(m,M).

(iii) x′′ = f(x)g(x′) has a periodic solution x(t), with x(0) = m, x(T ) = M and
period 2T , where

T =
∫ M

m

dr

G−1
+

(∫ r

m
f(s) ds

) .

Moreover x increases on [0, T ] and decreases on [T, 2T ].

Proof. (i) ⇒ (ii) We can suppose without loss of generality that x is a down-
up solution on [0, T ], x(0) = m, x(T ) = M for some T 6= 0 and x′(0) = 0 =
x′(T ). Now it suffices to apply Propositions 4.2-4.7 to this solution, and note that
[m,M ] ⊂ x ([0, T ]). Finally we deduce from (4.1) with t1 = 0 and t2 = T that∫ M

m
f(r) dr = 0.

(ii) ⇒ (iii) If we apply Proposition 7.2 to (1.1) with J = [m, M ], x0 =
y1 = m, x1 = 0 and y0 = M , and we note that it can be extended periodically
backwards by symmetry with respect to t = 0.

The implication (iii) ⇒ (i) is clearly true. ¤
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