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Abstract

We deal with the existence of periodic solutions for problems with a

jump discontinuity. We use an approximation procedure and the method

of the lower and upper solutions.

Keywords: Periodic solutions; Discontinuous problems; Second order

differential equations; Lower and upper solutions.

1 Introduction

The goal of this paper is to establish the existence of solutions of the

problem

u′′ + g(u) = h(t), u(0) = u(T ), u′(0) = u′(T ). (1.1)

where h is continuous in [0, T ] and g is continuous in R \ {0} with a jump

discontinuity at u = 0.

Several authors have dealt with boundary value problems involving

discontinuous functions, using the methods of Nonlinear Analysis suitable

to obtain existence results in the theory of ordinary and partial differential

equations. Let us mention that problems concerning elliptic equations

have been tackled in [1] using a dual action variational technique; similar

problems have been considered in [3] by means of critical point theory for

locally Lipschitz functionals. We shall use an approximation procedure in

which g is replaced by a sequence of continuous functions that “fill the

gap” between g(0−) and g(0+); this method has been already used for

instance in [5] for elliptic problems and in [4] for periodic problems with

dry friction.

Of course, there is a rich literature in the field of differential inclusions,

and in recent years a lot of attention has been given to the periodic bound-

ary value problem for inclusions of the first and second order. Topological

and variational methods have been developed to extend to differential

inclusions some significant existence results in the area of ordinary differ-

ential equations. Only to mention some recent work, we refer the reader

2



to [2, 9, 11, 12, 15] and their references , where research in this field may

be traced back. The discontinuities in the right-hand sides considered by

these authors are, of course, much more general than ours. However, par-

ticular features of the asymptotic behaviour of g as the ones that interest

here do not seem to have been covered in the literature. Moreover, less

attention has been given to multiplicity of solutions.

On the other hand, problem (1.1) with g continuous (which is our

starting point) has inspired a huge amount of work: in the last quarter

of century significant steps have been given towards the understanding of

existence, multiplicity and properties of its solutions. These depend, of

course, on which type of restoring term g one is interested in.

We shall consider mainly two types of behaviour for g:

1) g is positive everywhere and vanishes at ∞;

2) roughly speaking, g takes values above and below the mean value h̄

of h(t) and has its growth linearly restricted on one side.

The first type has been recently studied by Ward [18]. We improve his

existence results by adding multiplicity and we show that multiplicity

persists in the discontinuous case.

The second type has been studied by many authors. In connection

with our approach, we should mention that two important devices that

have been used to deal with this type of forces are a Landesman-Lazer

condition (see [10]) and the sign condition u(g(u) − h̄) ≥ 0 for large |u|
(see [7, 14, 16, 17]). These and related situations have been approached

by means of topological and variational methods, the use of upper and

lower solutions included. Very recently, De Coster and Tarallo [6] have

revisited the problem and introduced new techniques. In fact we make

an intensive use of one of their results here: an important tool in our

arguments consists in obtaining a solution of (1.1) provided that g is

bounded and a lower solution and an upper one are known, independently

of any ordering between them (cf. [6]). See theorem A below. This

provides simpler proofs than the classical ones in similar situations.
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The nonlinearities of the second type that we consider in this paper

are such that g(u)− h̄ may change sign in arbitrary large intervals. Also,

we never use the assumption that the potential (the primitive G of g− h̄)

is coercive. In this way our results, even in the continuous case, do not

seem to be contained in the above mentioned literature.

We would like to underline that, while working with the approximation

procedure, we need to be able to localize the solutions of the intermediate

problems. Hence we rely on classical techniques to deal with existence

of solutions but we always care to exhibit an explicit bound for those

solutions. This is done by using theorem A in combination with some

features of the problem under analysis.

It will be clear in the outset that the same method would allow us

to obtain analogous results for functions g(u) with finitely many jump

discontinuities.

The first author acknowledges gratefully the hospitality received at

Centro de Matemática e Aplicaçoes Fundamentais at University of Lisbon

during the visit in which this work was done.

2 Bounded and positive nonlinearities

In our work the following result, which is a particular case of theorem 3.4

in [6], is fundamental.

Theorem A Let g : R→ R be a continuous function, h ∈ L1(0, T ) and let

there exist α, β ∈ H1
T lower and upper solutions, respectively, of (1.1) with

α � β (H1
T denotes the Sobolev space of T−periodic funtions). Assume

moreover there exists M ≥ 0 such that for all s ∈ R

|g(s)| ≤ M.

Then the problem (1.1) has at least one solution u ∈ W 2,1(0, T ) with u ∈ S
where

S = {u ∈ C([0, T ]) : ∃t1, t2 ∈ [0, T ], u(t1) ≥ β(t1), α(t2) ≥ u(t2)}. (2.2)
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2.1 The continuous case

In [18] the author deals with problem (1.1) under the following condition:

(G1) Assume g(s) > 0 for all s and g(−∞) = g(+∞) = 0.

For any function w ∈ L1(0, T ) let

w̄ =
1

T

Z T

0

w(s)ds and w̃ = w − w̄,

and for g : R→ R bounded let ‖g‖∞ = sups∈R |g(s)|.
We introduce the space C̃([0, T ]) whose elements are the T -periodic

continuous real functions with zero mean value in [0, T ]. As is well known

any continuous, T -periodic real function u(t) splits as u(t) = ū + ũ(t),

where ū is the mean value of u and ũ ∈ C̃([0, T ]).

The following theorem is the main result of [18] (theorem 1 in [18]).

Theorem B Let g ∈ C(R) satisfy (G1). Then for h̃ ∈ C̃([0, T ]) there

is a number λ∗ = λ∗(h̃) satisfying 0 < λ∗(h̃) ≤ ‖g‖∞ such that the

periodic problem (1.1) with h(t) = h̄ + h̃(t) has a solution if and only

if 0 < h̄ ≤ λ∗(h̃).

Remark 2.1 In theorem 1 of [18] the following condition is also imposed

(G2) Let G(s) =
R s

0
g(t)dt, and assume there is a number M ≥ 0 such

that |G(s)| ≤ M for all s ∈ R,

but a carefully reading of the proof shows that (G2) is not needed.

In the following proposition we are going to prove the existence of

lower and upper solutions for problem (1.1).

Proposition 2.1 Let g ∈ C(R) satisfy (G1). Then for h̃ ∈ C̃([0, T ]) and

0 < h̄ < λ∗(h̃) there exist a strict lower solution α and two upper solutions

β1, β2 of problem (1.1) with h(t) = h̄ + h̃(t), such that

β1(t) ≤ α(t) ≤ β2(t) for all t ∈ [0, T ].
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Proof. Choose λ ∈ (h̄, λ∗(h̃)). The problem

u′′ + g(u) = h̃(t) + λ, u(0) = u(T ), u′(0) = u′(T ),

has, by theorem B, a solution α which is a strict lower solution for (1.1).

Now, let w be the unique periodic solution of u′′ = h̃(t) with mean

value zero. Since g(−∞) = g(+∞) = 0, there exists c > 0 such that

β1 = w − c and β2 = w + c are upper solutions for (1.1) and moreover

β1(t) ≤ α(t) ≤ β2(t) for all t ∈ [0, T ].

ut

As a direct consequence of proposition 2.1 and theorem A we have the

following multiplicity result, which improves theorem B.

Theorem 2.2 Let g ∈ C(R) satisfy (G1). Then for h̃ ∈ C̃([0, T ]) there is

a number λ∗ = λ∗(h̃) satisfying 0 < λ∗(h̃) ≤ ‖g‖∞ such that the periodic

problem (1.1) with h(t) = h̄ + h̃(t)

i) has at least two solutions if 0 < h̄ < λ∗(h̃),

ii) has at least one solution if h̄ = λ∗(h̃),

iii) has no solution if h̄ 6∈ (0, λ∗(h̃)].

Remark 2.2 Using phase plane analysis it is easy to give examples of

problems of the form

u′′ + g(u) = h̄, u(0) = u(T ), u′(0) = u′(T ),

where g satisfies (G1), is strictly increasing in (−∞, 0] and strictly de-

creasing in [0, +∞) and whose only solutions for a small enough period

T > 0 are constant. Hence the above result cannot be in general improved.

Next we prove that λ∗ is an increasing function of g.

Lemma 2.3 Let g1, g2 ∈ C(R) satisfy (G1) and such that g1(s) ≤ g2(s)

for all s ∈ R. Then for h̃ ∈ C̃([0, T ]) we have, with obvious notation,

λ∗(g1, h̃) ≤ λ∗(g2, h̃).
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Proof. By theorem B problem

u′′ + g1(u) = h̃(t) + λ∗(g1, h̃), u(0) = u(T ), u′(0) = u′(T ),

has a solution α, which is a lower solution for

u′′ + g2(u) = h̃(t) + λ∗(g1, h̃), u(0) = u(T ), u′(0) = u′(T ), (2.3)

because g1(s) ≤ g2(s) for all s ∈ R.

Repeating the argument of proposition 2.1 we have that there exists

an upper solution β for (2.3) with α ≤ β. Therefore, problem (2.3) has a

solution and by theorem B we deduce that λ∗(g1, h̃) ≤ λ∗(g2, h̃). ut

In theorem 2 of [18] the author points out that in most cases λ∗(h̃) <

‖g‖∞. We are going to give a sufficient and necessary condition for the

equality λ∗(h̃) = ‖g‖∞ to hold.

Proposition 2.4 Let g ∈ C(R) satisfy (G1) and be h̃ ∈ C̃([0, T ]). Then

λ∗(h̃) = ‖g‖∞ if and only if there exists an interval (maybe degenerate)

I ⊂ g−1(‖g‖∞) such that l(v([0, T ])) ≤ l(I), where v is the unique solution

with mean value zero of problem

u′′ = h̃(t), u(0) = u(T ), u′(0) = u′(T ), (2.4)

and l denotes length.

Proof. If λ∗(h̃) = ‖g‖∞ then by theorem B there exists a solution v1 of

problem

u′′ + g(u) = h̃(t) + ‖g‖∞, u(0) = u(T ), u′(0) = u′(T ). (2.5)

Integrating the equation over [0, T ] and using the periodicity conditions

we have that

1

T

Z T

0

g(v1(s))ds = ‖g‖∞,

or equivalently

1

T

Z T

0

(‖g‖∞ − g(v1(s)))ds = 0,

and since ‖g‖∞ ≥ g(v1(s)) for all s ∈ [0, T ] we have that

g(v1(s)) = ‖g‖∞ for all s ∈ [0, T ].
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Therefore v1 is a solution of (2.4) and then we have that v1 = v + c.

Moreover, since g(v1(s)) = ‖g‖∞ for all s ∈ [0, T ], we have that there

exists an interval I ⊂ g−1(‖g‖∞) such that l(v([0, T ])) = l(v1([0, T ])) ≤
l(I).

Conversely, if there exists I ⊂ g−1(‖g‖∞) such that l(v([0, T ])) ≤ l(I),

where v is the unique solution with mean value zero of (2.4), we can choose

c ∈ R such that v1 = v + c satisfies v1([0, T ]) ⊂ I and then v1 is a solution

of (2.5). Thus we deduce that λ∗(h̃) = ‖g‖∞. ut

Now we are in a position to give some estimates for λ∗.

Proposition 2.5 Let g ∈ C(R) satisfy (G1) and be h̃ ∈ C̃([0, T ]). If for

some λ ∈ (0, ‖g‖∞] there exists an interval I ⊂ g−1([λ,∞)) such that

l(v([0, T ])) ≤ l(I), where v is the unique solution with mean value zero of

(2.4), then we have that

0 < λ ≤ λ∗(h̃) ≤ ‖g‖∞.

Proof. We consider the truncated function gλ(s) = g(s) if g(s) ≤ λ and

gλ(s) = λ if g(s) ≥ λ. It is obvious that gλ(s) ≤ g(s) for all s ∈ R and that

‖gλ‖∞ = λ. The hypotheses and proposition 2.4 imply that λ∗(gλ, h̃) = λ

and then by lemma 2.3 we deduce that λ ≤ λ∗(h̃). ut

2.2 The discontinuous case

In this section we are going deal with problem (1.1) considering a function

g with a jump discontinuity. Our assumptions on g are (G1) and

(D1) g : R→ R is a continuous function in R \ {0} and the limits

g(0±) = lim
x→0±

g(x) > 0

exist and are finite.

We notice that (G1) and (D1) imply that g is bounded.

Definition 2.1 For g satisfying conditions (G1) and (D1) and for each

h ∈ C([0, T ]) we mean by a generalized solution of problem (1.1) a function
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u ∈ W 2,1(0, T ) with u(0) = u(T ), u′(0) = u′(T ) and such that there exists

w : [0, T ] → R satisfying

i) u′′(t) + w(t) = h(t) a.e. t ∈ [0, T ];

ii) w(t) belongs to the interval with end points g(0−) and g(0+) for a.e.

t ∈ Ω := {t ∈ [0, T ] : u(t) = 0}; and

iii) w(t) = g(u(t)) for a.e. t ∈ [0, T ] \ Ω.

It should be remarked that, depending on the “gap” of g at the origin

and the amplitude of the oscillation h(t), problem (1.1) may have a trivial

generalized solution, namely the constant zero, if the range of h(t) is con-

tained in the interval whose endpoints are g(0−) and g(0+). For a given

g, provided that h(t) oscillates enough, this phenomenon cannot occur, so

that our existence results do not reduce to trivial statements.

Next, we present the main result of this section about the multiplicity

of generalized solutions for the periodic problem (1.1).

Theorem 2.6 Assume that (G1) and (D1) hold. For each h̃ ∈ C̃([0, T ])

there exists 0 < λ̂(h̃) ≤ ‖g‖∞ such that if 0 < h̄ < λ̂(h̃) then problem

(1.1) with h(t) = h̃(t) + h̄ has at least two generalized solutions.

Proof. 1).- Approximated problems

It is easy to see that there exist a sequence of positive numbers tn ↓ 0

and a nondecreasing sequence of continuous functions {gn}∞n=1 with the

following properties:

gn(s) = g(s) if |s| ≥ tn, (2.6)

and, given m ∈ N there exists δ > 0 such that (in case g(0−) < g(0+);

otherwise the following inequalities are reversed)

g(0−)− 1

m
≤ gn(s) ≤ g(0+) +

1

m
if |s| ≤ δ and for all n ∈ N. (2.7)
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In fact, it suffices to set (in case g(0−) < g(0+); the procedure in the

other case is analogous)

gn(s) =

8
>>><
>>>:

g(s) if s < 0 or s > tn,

g(0−) if s = 0,

ln(s) if 0 ≤ s ≤ tn,

where ln(t) = g(0−) + nt and tn = inf{t > 0 : ln(t) = g(t)}.
If we take λ̂(h̃) = λ∗(g1, h̃) by lemma 2.3 we have that λ̂(h̃) ≤ λ∗(gn, h̃)

for all n ∈ N.

Fix h̄ such that 0 < h̄ < λ̂(h̃) and consider for all n ∈ N the approxi-

mated problems (Pn) with the continuous function gn

(Pn) u′′ + gn(u) = h̃(t) + h̄, u(0) = u(T ), u′(0) = u′(T ).

Take now h̄ < ¯̄h < λ̂(h̃) and let α be the solution of

u′′ + g1(u) = h̃(t) + ¯̄h, u(0) = u(T ), u′(0) = u′(T ),

which exists by theorem B. Since {gn}∞n=1 is nondecreasing α is a strict

lower solution of (Pn) for all n ∈ N. Using a similar argument to that of

the proof of proposition 2.1 we obtain a pair of upper solutions β1 and β2

for all problems (Pn) such that

β1(t) ≤ α(t) ≤ β2(t) for all t ∈ [0, T ].

Then, there exists a solution v1 of (P1) such that

α(t) < v1(t) ≤ β2(t) for all t ∈ [0, T ].

We notice that the symbol “<” appears instead of “≤” because α is a

strict lower solution. Now v1 is a lower solution for (P2) and repeating

the process we have a nondecreasing sequence

α < v1 ≤ v2 ≤ . . . ≤ vn ≤ vn+1 ≤ . . . ≤ β2, (2.8)

where vn is a solution of (Pn).
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On the other hand, by theorem A, for each n ∈ N there exists a solution

un of problem (Pn) such that for some t1n, t2n ∈ [0, T ] we have that

un(t1n) ≥ β1(t
1
n) and un(t2n) ≤ α(t2n). (2.9)

2).- Passing to the limit.

By assumptions (G1) and (D1), by property (2.6) and by the fact that

{gn}∞n=1 is nondecreasing there exists M1 > 0 such that ‖gn‖∞ ≤ M1 for

all n ∈ N. Since vn is a solution of (Pn) we deduce that there exists M2 > 0

such that ‖v′′n‖∞ ≤ M2 for all n ∈ N. Moreover {vn}∞n=1 is bounded and

then there exists M3 > 0 such that ‖v′n‖∞ ≤ M3 for all n ∈ N. Therefore,

Ascoli’s theorem and (2.8) imply that {vn}∞n=1 converges uniformly (even

in the C1 norm) to a continuous function v which satisfies v(0) = v(T )

and v′(0) = v′(T ).

On the other hand, {v′′n}∞n=1 ⇀ z in L2(0, T ) and {gn(vn)}∞n=1 ⇀ w in

L2(0, T ), because {v′′n}∞n=1 and {gn(vn)}∞n=1 are bounded (if it is necessary

take a convergent subsequence). In particular we have that z = v′′ in the

sense of distributions and then v ∈ W 2,1(0, T ). Passing to the limit we

obtain

v′′(t) + w(t) = h̃(t) + h̄ for a.e. t ∈ [0, T ].

Let K ⊂ [0, T ] \Ω be a compact set, where Ω = {t ∈ [0, T ] : v(t) = 0}.
Since vn → v uniformly we have that |vn(t)| ≥ c > 0 for all t ∈ K and for

n large enough. Then by (2.6) we have that gn(vn) → g(v) uniformly in

K and therefore

w(t) = g(v(t)) for a.e. t ∈ [0, T ] \ Ω.

Now suppose for definiteness that g(0−) < g(0+); the argument in the

other case being analogous. Given m ∈ N let δ > 0 be as in (2.7). Since

vn → v uniformly, there exists a N0 ∈ N such that |vn(t)| ≤ δ in Ω for all

n ≥ N0. Then by (2.7) we have for all n ≥ N0

g(0−)− 1

m
≤ gn(vn(t)) ≤ g(0+) +

1

m
for all t ∈ Ω.
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Since the set {x ∈ L2(0, T ) : g(0−) − 1
m
≤ x ≤ g(0+) + 1

m
} is closed in

the weak topology of L2(0, T ) passing to the limit we obtain

g(0−)− 1

m
≤ w(t) ≤ g(0+) +

1

m
for a.e. t ∈ Ω.

Then g(0−) ≤ w(t) ≤ g(0+) for a.e. t ∈ Ω, and thus v is a generalized

solution of (1.1).

By a quite similar reasoning we obtain that {un}∞n=1 converges uni-

formly (taking a subsequence if it is necessary) to a generalized solution

u of problem (1.1).

3.- There are two different solutions.

By (2.8) we have that α(t) < v1(t) ≤ v(t) for all t ∈ [0, T ]. On the

other hand (2.9) implies there exists s ∈ [0, T ] such that u(s) ≤ α(s).

Then u 6= v, and the proof is complete. ut

3 One-sided sublinear nonlinearities

The restoring terms considered in this section are, roughly speaking, un-

bounded and become larger at +∞ than at −∞. Our results are related

to those of [7, 8, 14, 16, 17].

We shall start from a hypothesis that allows the construction of upper

and lower solutions. Namely, we shall assume throughout in this section

the following condition relating g and h̄:

(G2) g : R → R and for each r > 0 there exist intervals Ir, Jr such that

l(Ir) > r, l(Jr) > r and

g|Ir ≤ h̄ ≤ g|Jr .

Then it is clear that, choosing such intervals with sufficiently large

length, we can construct an upper (respectively lower) solution c + w(t)

of (1.1), taking values in I (respectively J), by adding a constant c to

w, the unique periodic solution of w′′ = h̃(t) with mean value zero. If

sup J ≤ inf I the lower and upper solutions are well ordered and it is well
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known that a solution exists between them. Therefore in the theorems

below we shall always deal with the assumption

(G2) g : R → R and for each r > 0 there exist intervals Ir, Jr such that

l(Ir) > r, l(Jr) > r, sup Ir < 0 < inf Jr and

g|Ir ≤ h̄ ≤ g|Jr .

3.1 The continuous case

We present a simple existence principle.

Proposition 3.1 Let g ∈ C(R) and suppose that in addition to (G2) g

is bounded above or is bounded below. Then for each h̃ ∈ C̃([0, T ]) and

h(t) = h̄ + h̃(t) there exists a solution of (1.1).

Proof. According to the above remark we can fix a lower solution α

and an upper solution β of (1.1) and β < 0 < α. Let the closed interval

[m, M ] contain the range of both α and β. For definiteness assume that

g is bounded below (if g is bounded above the proof is analogous), set

K := sup
u∈R

[−g(u)] + ‖h‖∞, L := max{|m|, M} + KT 2 and define a new

function by setting

gL(u) =

8
>>><
>>>:

g(u) if |u| ≤ L,

g(−L) if u < −L,

g(L) if u > L.

Then consider the modified problem

u′′ + gL(u) = h(t), u(0) = u(T ), u′(0) = u′(T ). (3.10)

Since g = gL in [−L, L] the upper and lower solutions β and α are

upper and lower solutions of (3.10). Now theorem A is applicable to

(3.10) and we assert that (3.10) has a solution u(t) in the set S given in

(2.2). Hence there exists t1 ∈ [0, T ] such that u(t1) ∈ [m, M ]. On the

other hand

Z T

0

u′′+(s) ds =

Z T

0

(−g(u(s)) + h(s))+ ds ≤ KT,
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and since due to periodicity

Z T

0

u′′+(s) ds =

Z T

0

u′′−(s) ds and moreover,

letting t0 ∈ [0, T ] be such that u(t0) = min
t∈[0,T ]

u(t),

−
Z t

t0

u′′−(s)ds ≤ u′(t) ≤
Z t

t0

u′′+(s)ds,

we conclude ‖u′‖∞ ≤ KT . Then it follows that

|u(t)| ≤ |u(t1)|+
����
Z t

t1

u′(s) ds

���� ≤ max{|m|, M}+KT 2 = L for all t ∈ [0, T ].

Then, by the construction of gL, u(t) is a solution of (1.1). ut

In order to simplify the statement of our next theorems let us introduce

the following definition. Given a function ĝ defined in R we shall say that

another function g is admissible (with respect to ĝ) if g = ĝ in R \ [−1, 1]

and sup
x∈[−1,1]

g(x) = sup
x∈[−1,1]

ĝ(x) and inf
x∈[−1,1]

g(x) = inf
x∈[−1,1]

ĝ(x).

Theorem 3.2 Let ĝ ∈ C(R) satisfying (G2) and

lim sup
u→−∞

ĝ(u)

u
<

π2

T 2
. (3.11)

Assume in addition that either

(i) ĝ is bounded below in [0, +∞), or

(ii) Ĝ(u) :=

Z u

0

ĝ(s) ds− h̄u is bounded below in [0, +∞).

Then, there exist constants c, C with the property that, for all con-

tinuous admissible functions g, problem (1.1) has a solution u(t) with

c ≤ u(t) ≤ C for all t ∈ [0, T ].

Proof. Fix a lower solution α and an upper solution β of (1.1) as in the

preceeding proof, lim sup
u→−∞

ĝ(u)

u
< ν <

π2

T 2
and k > 0 such that

ĝ(u) ≥ νu− k, for all u ≤ 0. (3.12)

Of course, we can suppose that any continuous admissible g satisfies the

same inequality.

Claim: There exist constants c, C with the property that, for all contin-

uous admissible functions g, any periodic solution u(t) of problem (1.1) for

which u(t1) ∈ [m, M ] for some t1 satisfies c ≤ u(t) ≤ C for all t ∈ [0, T ].

(Here m and M are the same used in the proof of Proposition 3.1 )
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Proof of the Claim: If u(t) takes values less than m, let [a, b] be an

interval such that b− a < T , u(t) < m if a < t < b and u(a) = m = u(b).

Multiplying (1.1) by u(t) − m and integrating in [a, b], using (3.12), we

obtain, with k1 = ν|m|+ k + ‖h‖∞ :

Z b

a

u′(s)2 ds ≤ ν

Z b

a

(u(s)−m)2 ds + k1

Z b

a

|u(s)−m| ds.

Now, since ν < π2

T2 and, by the well known Poincaré inequality (see [13,

section 1.3]),

π2

(b− a)2

Z b

a

(u(s)−m)2 ds ≤
Z b

a

u′(s)2 ds,

we infer that there exists k2 = k2(k1, ν) such that

Z b

a

u′(s)2 ds ≤ k2.

Let m0 = u(t0) be the minimum of u (t0 ∈ (a, b)). Since u(t0) =

u(a) +
R t0

a
u′(s)ds, it follows easily that m0 ≥ m− (Tk2)

1/2.

Assume (i) holds. As g is bounded below in [m− (Tk2)
1/2, +∞) and

the lower bound can be taken to be the same for all admissible functions

g, it turns out, as in the proof of proposition 3.1, that for some constant

C that we can express in terms of m, M, k2, T and inf [m−(Tk2)1/2,+∞) g,

M0 := max u ≤ C.

Assume (ii) holds. First we note that we can estimate u′(t) for u(t) ≤
M , since for each such t there exists an interval [t, s] (or [s, t]) with u′(s) =

0 and m−(Tk2)
1/2 ≤ u(τ) ≤ M for all τ ∈ [t, s] (or [s, t]). Integrating

between t and s we infer

sup
u(t)≤M

|u′(t)| ≤ T ( sup
[m−(Tk1)1/2,M ]

|g(u)|+ ‖h‖∞).

Now let t ∈ [0, T ] be arbitrary. Multiplying (1.1) by u′ and integrating

in some interval [t1, t], where u(t1) ≤ M , we derive (with H := ‖h̃‖∞)

u′(t)2

2
+ G(u(t)) ≤ u′(t1)2

2
+ G(u(t1)) + 2H

Z t

t1

|u′(s)|ds.

Note that G is bounded below in [m,∞) by the same constant for all

admissible g. In view of the preceding estimate and (ii) there exists a
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constant A > 0 (the same for every function g) such that

u′(t)2 ≤ A2 + 2H

Z t

t1

|u′(s)|ds.

From this differential inequality we obtain

|u′(t)| ≤ A + HT for all t ∈ [0, T ].

Hence, clearly if M0 = max u, we have M0 ≤ M +T (A+HT ). So that in

this case we are also able to determine c and C with the properties stated.

This proves the Claim.

Now it is straightforward to finish the proof of the theorem: it suffices

to consider a modified problem, by setting g constant in each of the in-

tervals (−∞, c] and [C, +∞). (We may assume that C is large enough so

that g(C) ≥ h̄.) Then invoking Theorem A and the estimates established

in the Claim (since the same assumptions and bounds hold for truncated

functions), the result follows. ut

Theorem 3.3 Let ĝ ∈ C(R) satisfying (G2), and

lim inf
u→−∞

minu≤s≤0 ĝ(s)

u
<

2π

T 2
. (3.13)

Assume in addition that either

(i) ĝ is bounded below in [0, +∞), or

(ii) Ĝ(u) :=

Z u

0

ĝ(s) ds− h̄u is bounded below in [0, +∞).

Then there exist constants c, C with the property that, for all con-

tinuous admissible functions g, problem (1.1) has a solution u(t) with

c ≤ u(t) ≤ C for all t ∈ [0, T ].

Proof. Fix α, β, m, M as in the proceeding case. For all admissible

functions g the primitives G(u) =

Z u

0

g(s) ds− h̄u have a common lower

bound. Consider the truncated function

gR,S(u) =

8
>>><
>>>:

g(u) if −R ≤ u ≤ S

g(−R) if u < −R,

g(S) if u > S.
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Let S ≥ M be such that g(S) ≥ h̄ and, since lim inf
u→−∞

minu≤s≤0 ĝ(s)

u
<

2π

T 2
,

we can pick up R > 0 such that, independently of S and the admissible

function g, the following hold:

1) gR,S(u) ≥ −νR for all u ≤ 0, with ν < 2π
T2 ;

2) m− T2

2π
(νR + H) ≥ −R, (H = ‖h‖∞).

By Theorem A, the problem (1.1) with the function gR,S has a solution

uR ∈ S. For simplicity we write u = uR.

If u(t) takes values less than m, let [a, b] be an interval such that

b− a < T , u(t) < m if a < t < b and u(a) = m = u(b). Multiplying (1.1)

by u(t)−m and integrating in [a, b], using (1), we obtain:

Z b

a

u′(t)2 dt ≤ (νR + H)

Z b

a

|u(t)−m| dt.

On the other hand, by the Poincaré inequality

π2

(b− a)2

Z b

a

(u(t)−m)2 dt ≤
Z b

a

u′(t)2 dt.

Then, we have

π2

T 3

�Z b

a

|u(t)−m| dt

�2

≤ π2

(b− a)2

Z b

a

(u(t)−m)2 dt

≤ (νR + H)

Z b

a

|u(t)−m| dt.

Therefore, it follows that

Z b

a

|u(t)−m| dt ≤ T 3

π2
(νR + H),

and thus Z b

a

u′(t)2 dt ≤ T 3

π2
(νR + H)2.

Let t0 ∈ [a, b] such that u(t0) = min{u(t)} := m0. Then

m−m0 =

Z b

t0

u′(s)ds ≤
Z b

t0

u′+(s)ds ≤
Z b

a

u′+(s)ds.

Since

Z b

a

u′(s)ds = 0 we have that

Z b

a

u′+(s)ds =

Z b

a

u′−(s)ds and thus
Z b

a

|u′(s)|ds = 2

Z b

a

u′+(s)ds. Therefore

m−m0 ≤ 1

2

Z b

a

|u′(s)|ds ≤ 1

2

s
T

Z b

a

u′(s)2ds.
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Hence m0 ≥ m− T2

2π
(νR + H), and by 2) we have m0 ≥ −R.

Now, proceeding as in the proof of theorem 3.2 we deduce that, for

both cases i) and ii), there exists a constant C, independent of S, such

that M0 := max u ≤ C. Then if we choose S ≥ max{C, M} such that

g(S) ≥ h̄ we have that

−R ≤ u(t) ≤ S for all t ∈ [0, T ],

and therefore u(t) is a solution of problem (1.1) which moreover satisfies

c ≤ u(t) ≤ C for all t ∈ [0, T ],

with c = −R and independently of the admissible function g. ut

Remark 3.1 i) Suppose that (G2) is rephrased simply as

(G2’): g : R→ R and there exist intervals I, J such that sup I < 0 <

infJ and

g|I ≤ h̄ ≤ g|J .

Observing that there exists a constant c such that for the solution w of

w′′ = h̃(t) with mean value zero we have

‖w‖∞ ≤ c‖h̃‖L1(0,T )

one easily sees that the above theorems still hold with (G2)’ instead of

(G2), provided that we add the assumption that ‖h̃‖L1(0,T ) is sufficiently

small. Also, in case of Theorem 3.3, the truncation must be done in such

a way that (ii) still holds for truncated functions.

ii) We have studied the case where the behaviour of g(u) for u negative

and large has the main role. Of course, results of the same type hold if we

consider a nonlinearity whose behaviour at ±∞ is reversed with respect to

the one just considered.

iii) Theorems 3.2 and 3.3 may be related to Theorem 1 of Fernandes

and Zanolin [7] and Theorem 2 of Fonda [8]. These are sharp results where

the asymptotic behaviour of g is described simply by lim inf
u→−∞

2Ĝu

u2
<

π2

T 2
.

Note, however, that our set of assumptions are different: namely, we use
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(G2), and we do not use coerciveness of Ĝ. Note also that, for some

functions ĝ the lim inf in the left-hand side of (3.13) may be smaller than

lim inf
u→−∞

2Ĝ(u)

u2
.

3.2 The discontinuous case

We are now in a position to study problem (1.1) for functions with a jump

discontinuity at u = 0, that is, we consider the following assumption:

(D2) g : R→ R is a continuous function in R \ {0} and the limits

g(0±) = lim
x→0±

g(x)

exist and are finite.

Theorem 3.4 Let g satisfy (G2), (D2) and

lim sup
u→−∞

g(u)

u
<

π2

T 2
.

Assume in addition that either

(i) g is bounded below in [0, +∞), or

(ii) G(u) :=

Z u

0

g(s) ds− h̄u is bounded below in [0, +∞).

Then the problem (1.1) has a generalized solution.

Proof. We construct a sequence of continuous functions {gn}∞n=1 verifying

(2.6) and linear in [− 1
n
, 1

n
]. Clearly, these are admissible with respect to

one of them, say, g1. For this function the assumptions of Theorem 3.2

hold. Hence the approximated problems

u′′ + gn(u) = h(t), u(0) = u(T ), u′(0) = u′(T ),

have solutions un and moreover there are constants c, C such that c ≤
un(t) ≤ C for all t ∈ [0, T ] and for all n ∈ N. Using Ascoli’s theorem in

a standard manner we extract a convergent subsequence whose limit can

be shown, as in the proof of Theorem 2.6, to be a generalized solution of

(1.1). ut
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In the same way we obtain the following result.

Theorem 3.5 Let g satisfy (G2), (D2) and

lim inf
u→−∞

minu≤s≤0 g(s)

u
<

2π

T 2
.

Assume in addition that either

(i) g is bounded below in [0, +∞), or

(ii) G(u) :=

Z u

0

g(s) ds− h̄u is bounded below in [0, +∞).

Then the problem (1.1) has a generalized solution.

Remark 3.2 We can also replace (G2)’ for (G2) to obtain solutions for

‖h̃‖L1(0,T ) small, cf. Remark 3.1.
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