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Abstract

We prove the existence of infinitely many solutions for a second–order

singular initial value problem between given lower and upper solutions.

Our study is motivated by a singular problem which arises in the field of

nonlinear massive gravity. Moreover, we also discuss the global behavior of

solutions of the motivating problem. Our arguments lean at some steps on

lower and upper solutions with corners in their graphs, thus showing the

applicability of this more general definition of lower and upper solutions

in the analysis of a concrete mathematical model.

∗The research of J. Á. Cid and R. López Pouso is partially supported by Ministerio de

Educación y Ciencia, Spain, project MTM2007-61724, and by Xunta de Galicia, Spain, project

PGIDIT06PXIB207023PR.

1



Keywords. Singular differential equation; second–order initial value problem;

nonlinear massive gravity.

MSC2010. 34A12, 34A40, 83C99.

1 Introduction

Physical models in which the laws of General Relativity change at cosmological

distances (infrared–modified gravity) have been recently proposed in order to

explain the observed accelerated expansion of the Universe. One simple possi-

bility to get an infrared–modified gravity is to assume a non–zero mass for the

graviton, bringing about the so–called massive gravity theories described, for

instance, in the survey [23].

Babichev, Deffayet and Ziour study in [7, section 4] static spherically sym-

metric solutions in the associated decoupling limit of nonlinear Pauli–Fierz the-

ories, the simplest massive gravity models. In that context the mathematical

questions of existence and multiplicity of positive solutions for the following

problem arise:

y′′ =
3
√

y

4 3
√

x8
− 1

6 3
√

x5y
(x > 0), y(0) = y′(0) = 0. (1.1)

Problem (1.1) corresponds to equations (4.25) and (4.26) in [7] with the AGS

potential (s = +1), see the discussion in [7, page 33].

In this paper we present a general result on existence of infinitely many pos-

itive solutions for second–order singular initial value problems which, in partic-

ular, guarantees the existence of infinitely many positive solutions to Problem

(1.1). Moreover, we show that some of these solutions are defined on [0,+∞)

and some of them are not, and we give some additional information about the

set of solutions.

It is remarkable that, in agreement with our results, Jean Écalle, employing

the resurgence theory, provided1 the authors of [7] with an unpublished proof

of the existence of infinitely many solutions to the Problem (1.1).
1Personal communication of Cedric Deffayet.
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From all the characteristics of this paper, we single out the following four,

which we judge of interest:

• First, our general theorem (Theorem 2.2) is based on a well–known classic

result on ordinary differential equations, thus it is easily understandable

for a broad part of the mathematical scientific community.

• Second, Theorem 2.2 seems to fill a gap in the existing literature on singu-

lar initial value problems, since, as far as the authors are aware, it is the

first one which ensures infinitely many solutions between a pair of lower

and upper solutions, and it is also the first one which allows non–integrable

singularities around x = 0.

• Third, we give some supplementary information about the solutions of

Problem (1.1), studying in particular their continuability up to +∞ and

their localization near x = 0.

• Fourth, lower and upper solutions with corners in their graphs naturally

arise in our study of the solutions of Problem (1.1) in Section 3. We can

quote many references in connection with non–differentiable lower and

upper solutions for second–order differential equations, see [1, 9, 12, 13,

15, 16, 17, 21, 22], but examples of their applicability in the study of

mathematical models were demanding.

Note that the right–hand side of the differential equation in (1.1) exhibits

singularities not only in y = 0 but also in x = 0, and therefore it immediately

falls outside the scope of most existence results, such as [3, Theorem 2.1], [4,

Section 2.3], [5, Theorem 2.2], [25, Theorem 3.4] (furthermore, only positive

right–hand sides are considered in these references, which is not the case in

(1.1) either) or [6]. On the other hand, there seems to be very few existence

results which allow singularities both in x = 0 and y = 0, and the ones we know

do not apply because they rely to some extent on integrability with respect to

x around 0, so they do not apply for Problem (1.1). Note, for instance, that the

right–hand side of the differential equation in (1.1) does not satisfy condition
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(2.14) in [2, Corollary 2], as the corresponding integral diverges near 0 for any

c > 0, and it does not satisfy the condition (f0) on page 521 of [10] either.

The main result in this article on existence of positive solutions for singular

problems uses lower and upper solutions. Remarkably, we construct successive

approximations to singular Cauchy problems by solving non–singular Dirichlet

problems.

We organize this paper as follows: first (Section 2), we introduce our defi-

nitions of lower and upper solutions and we state and prove our main results

for second–order initial value problems in general; then (Section 3) we restrict

our attention to the particular case of Problem (1.1), and we use the results in

Section 2 to deduce the existence of infinitely many solutions for (1.1), to give

some information about their domains and their localization between explicitly

given lower and upper solutions, and to study the set of solutions.

2 Theoretical results

Let L > 0 be fixed and consider the nonlocal initial value problem

y′′ = f(x, y) for all x ∈ I = (0, L], y(0) = 0, y′(0) = y1 ≥ 0, (2.2)

where f : I×(0,+∞) → R is continuous. We look for solutions which are contin-

uous on I = [0, T ], differentiable on [0, L), and twice continuously differentiable

on (0, L).

We follow De Coster and Habets [8] and we introduce the following definition.

Definition 2.1 A lower solution of (2.2) is a function α ∈ C(Ī), α > 0 on I,

such that

(a1) for any x0 ∈ (0, L), either α′−(x0) < α′+(x0), or there exists an open

interval I0 ⊂ (0, L) such that x0 ∈ I0, α ∈ C2(I0) and, for all x ∈ I0,

α′′(x) ≥ f(x, α(x));

(a2) α(0) = 0 and there exists α′(0) = y1.
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An upper solution of (2.2) is a function β ∈ C(Ī), β > 0 on I, such that

(b1) for any x0 ∈ (0, L), either β′−(x0) > β′+(x0), or there exists an open

interval I0 ⊂ (0, L) such that x0 ∈ I0, β ∈ C2(I0) and, for all x ∈ I0,

β′′(x) ≤ f(x, β(x));

(b2) β(0) = 0 and there exists β′(0) = y1.

Finally, a solution of (2.2) is a function which is both a lower and an upper

solution.

Remark 2.1 An important particular case of Definition 2.1 is that of lower

and upper solutions in the classical sense, which belong to C2(0, L) and satisfy

the corresponding differential inequalities on the whole of (0, L).

Notice that Definition 2.1 allows lower (upper) solutions to have a number

of downwards (upwards) corners in their graphs. Classical lower and upper

solutions are not satisfactory in this paper, as certain lower and upper solutions

with corners are involved in our arguments in Section 3.

According to [8], non–differentiable lower and upper solutions for second–

order equations were considered first by Picard [20], and later rediscovered by

Nagumo [19]. We can quote many more recent references featuring lower and

upper solutions with corners in their graphs, but probably the definitions intro-

duced by De Coster and Habets in [8] best balance generality and simplicity.

Definition 2.1 is even simpler, and it suffices for the purposes in this paper.

We will need the following result, which goes back to Scorza Dragoni [24]

and Nagumo [18] when classical lower and upper solutions are considered, about

the existence of solution for a regular Dirichlet boundary value problem between

well–ordered lower and upper solutions, see [8, Theorem 1.3].

Theorem 2.1 Let α, β ∈ C([a, b]) be such that α ≤ β on [a, b] and consider the

compact set E = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}.
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If f : E −→ R is continuous and α and β satisfy, respectively, (a1) and (b1)

in Definition 2.1 with (0, L) replaced by (a, b), then for each ya ∈ [α(a), β(a)]

and each yb ∈ [α(b), β(b)] the Dirichlet problem

y′′(x) = f(x, y(x)) for all x ∈ (a, b), y(a) = ya, y(b) = yb,

has a solution y ∈ C2([a, b]) such that α(x) ≤ y(x) ≤ β(x) for all x ∈ [a, b].

Next we present our main result on existence of solutions to Problem (2.2):

Theorem 2.2 Let α and β be, respectively, a lower and an upper solution of

Problem (2.2).

If α(x) ≤ β(x) for all x ∈ I, then for each yL ∈ [α(L), β(L)] the Problem

(2.2) has a solution such that y(L) = yL and α(x) ≤ y(x) ≤ β(x) for all x ∈ I.

Proof. Let yL ∈ [α(L), β(L)] be fixed. For each n ∈ N, n ≥ 2, we consider the

Dirichlet problem

y′′(x) = f(x, y) for all x ∈ (L/n,L), y(L/n) = α(L/n), y(L) = yL, (2.3)

for which the restricted functions α|[L/n,L] and β|[L/n,L] are a pair of well–ordered

lower and upper solutions in the sense of Theorem 2.1.

Note that Problem (2.3) is not singular between α|[L/n,L] and β|[L/n,L], so

Theorem 2.1 guarantees that (2.3) has a solution ỹn : [L/n,L] → R between

α|[L/n,L] and β|[L/n,L]. Finally, we define a continuous function yn : Ī → R as

follows:

yn = α on [0, L/n], and yn = ỹn on [L/n,L].

The definition implies that the sequence {yn}n∈N is uniformly bounded on

Ī. Next we show that the sequence is uniformly equicontinuous on Ī. To do so,

let ε > 0 be fixed and let Lε ∈ (0, L/2) be so small that

0 < β(z) < ε/4 for all z ∈ (0, Lε]. (2.4)

Take n1 ∈ N, n1 ≥ 2, such that L/n < Lε whenever n > n1 and let δ1 > 0

be such that for all x1, x2 ∈ [0, L] the relation |x1 − x2| < δ1 implies

|yn(x1)− yn(x2)| < ε/2 for all n ∈ {2, 3, . . . , n1}. (2.5)
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Now for n ∈ N, n > n1, and for all x ∈ [Lε, L] we have

|y′′n(x)| = |ỹ′′n(x)| = |f(x, yn(x))| ≤ max
(s,z)∈K

|f(s, z)|, (2.6)

where K = {(s, z) ∈ [Lε, L] × (0,+∞) : α(s) ≤ z ≤ β(s)} is compact. By the

mean value theorem, there exists ξn ∈ (Lε, L) such that

|y′n(ξn)| =
∣∣∣∣yL − yn(Lε)

L− Lε

∣∣∣∣ ≤ 2 max0≤x≤L β(x)
L/2

=
4
L

max
0≤x≤L

β(x),

which, together with (2.6), implies that {y′n : n > n1} is uniformly bounded

on [Lε, L]. Therefore, there exists δ2 > 0 such that for all x1, x2 ∈ [Lε, L] the

condition |x1 − x2| < δ2 implies that

|yn(x1)− yn(x2)| < ε/2 for all n ∈ N, n > n1. (2.7)

Finally, we prove that for δ = min{δ1, δ2} we have

x1, x2 ∈ Ī , |x1−x2| < δ ⇒ |yn(x1)−yn(x2)| < ε for all n ∈ N, n ≥ 2. (2.8)

To prove that (2.8) holds we distinguish three cases:

Case 1: x1, x2 ∈ [0, Lε]. For all n ∈ N, n ≥ 2, the triangle inequality and (2.4)

yield

|yn(x1)− yn(x2)| < β(x1) + β(x2) < ε/2 < ε.

Case 2: x1, x2 ∈ [Lε, L]. In this case (2.8) is guaranteed by virtue of (2.7) for

n > n1, and by (2.5) for n ∈ {2, 3, . . . , n1}.

Case 3: x1 < Lε < x2. This can be reduced to the previous cases, as for all

n ∈ N, n ≥ 2, we have

|yn(x1)− yn(x2)| ≤ |yn(x1)− yn(Lε)|+ |yn(Lε)− yn(x2)| < ε.

The Ascoli–Arzelá Theorem ensures that {yn}∞n=2 has a subsequence, that

we denote again by {yn}∞n=2, which converges uniformly to some continuous

function y on Ī such that y(L) = yL. Obviously, α ≤ y ≤ β on Ī, which implies

that y(0) = 0 and that there exists y′(0) = y1. Standard arguments reveal that

y satisfies the differential equation on [r, L] for all r ∈ (0, L), so y solves (2.2).

ut
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Remark 2.2 Theorem 2.2 guarantees the existence of infinitely many solutions

to Problem (2.2) when α(L̃) < β(L̃) for some L̃ ∈ (0, L].

We also notice that the differential inequalities used in our definitions of

lower and upper solutions for Problem (2.2) agree with the ones considered in the

study of Dirichlet boundary value problems, and which are just the reversed ones

to those usually considered in the study of second order initial value problems

(see [11, 14]). This is due to the fact that we need to ensure the solvability of

some regular Dirichlet problems in the proof of Theorem 2.2.

According to Definition 2.1, solutions might have discontinuous first deriva-

tives at x = 0. This is not satisfactory for the motivating Problem (1.1) in its

context, because the authors of [7] arrived at (1.1) after a change of variables in

a related problem which consisted, roughly speaking, on turning an asymptotic

condition at +∞ into an initial condition at 0+. Therefore the interesting point

in [7] was really to find solutions to Problem (1.1) satisfying

lim
x→0+

y′(x) = 0,

or, equivalently, to find solutions of (1.1) which are continuously differentiable

on [0, L).

Next corollary provides us with sufficient conditions for filling that gap.

Corollary 2.1 In the conditions of Theorem 2.2, all solutions to (2.2) between

α and β are continuously differentiable on [0, L) provided that

either f(x, y) ≥ 0 whenever α(x) ≤ y ≤ β(x) (x ∈ I = (0, L]) (2.9)

or f(x, y) ≤ 0 whenever α(x) ≤ y ≤ β(x) (x ∈ I = (0, L]). (2.10)

Proof. Either one of conditions (2.9) and (2.10) implies that solutions y =

y(x) of (2.2) between α and β have a monotone first derivative, so the limit

limx→0+ y′(x) = y′(0+) exists and, by virtue of the Darboux Theorem, it can

only be y′(0+) = y′(0). ut
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3 Study of the motivating problem

We focus our attention now on Problem (1.1), so we consider Problem (2.2)

with y1 = 0 and

f(x, y) =
3
√

y

4 3
√

x8
− 1

6 3
√

x5y
, (x, y) ∈ (0,+∞)× (0,+∞).

A useful property of f is that it is increasing with respect to the y variable.

We will exploit this fact over and over in this section.

3.1 Existence of infinitely many solutions via explicit lower

and upper solutions

Notice that f(x, (2x/3)3/2) = 0 for all x ∈ (0,+∞), so α(x) = (2x/3)3/2 is a

lower solution to (1.1) on [0,+∞). On the other hand, one can check that an

upper solution for x > 0 near zero is given by β(x) = x3/2. Specifically, we

compute for x > 0

β′′(x) =
3

4
√

x
<

1
12x13/6

= f(x, β(x)) if and only if 0 < x < 3−6/5,

and 3−6/5 = 0.26758052058674 . . . . In particular, Theorem 2.2 applies on

[0, 1/4]. Here and henceforth we replace 3−6/5 by 1/4 for simplicity in sub-

sequent computations.

Furthermore, f(x, y) ≥ f(x, α(x)) = 0 whenever y ≥ α(x), so Problem (1.1)

has infinitely many continuously differentiable solutions between α and β on

[0, 1/4], by virtue of Corollary 2.1.

To sum up, notice that we have proven the following theorem.

Theorem 3.1 A lower and an upper solution for Problem (1.1) on the interval

[0, 1/4] are given, respectively, by

α(x) = (2x/3)3/2 and β(x) = x3/2 for all x ∈ [0, 1/4]. (3.11)

Therefore, for each s ∈ [α(1/4), β(1/4)] = [0.06804138174397 . . . , 0.125]

Problem (1.1) has a continuously differentiable solution y : [0, 1/4] → R such
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that y(1/4) = s and

(2x/3)3/2 ≤ y(x) ≤ x3/2 for all x ∈ [0, 1/4].

3.2 Complementary information about the set of solutions

of Problem (1.1)

We complement the information given in Secton 3.1 by studying the global

behavior of solutions to (1.1). We define the set of solutions

A = {y : [0, Ly) → R such that y is a noncontinuable solution of (1.1)}, (3.12)

where Ly > 0 might be equal to +∞.

First we will show that each solution in A is univocally determined by its

intersection with the graph of α(x) = (2x/3)3/2, x > 0. Indeed, we have the

following result.

Theorem 3.2 The mapping T : A −→ (0,∞) defined by

T y := x ∈ (0, Ly) if y(x) = α(x)

is well–defined and bijective.

We will also show that solutions in A can be divided into two classes, one of

them corresponding to solutions of (1.1) which tend to zero as x tends to some

finite Ly (then defined only up to Ly), and another class of globally defined (i.e.,

defined up to +∞) increasing solutions. More precisely, we have the following

theorem which is illustrated in Figure 1.

Theorem 3.3 There exists s0 > 0 such that the following assertions hold:

1. If y ∈ A and T y = s for some s ∈ (0, s0), then

Ly < +∞ and lim
x→L−y

y(x) = 0.

2. If y ∈ A and T y = s for some s ≥ s0, then

Ly = +∞ and y is increasing on [0,+∞).
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Figure 1: Some solutions of Problem (1.1) and their intersection with α, which

is drawn thicker.

3.2.1 Proof of Theorem 3.2

T : A → (0,∞) is well–defined. We start with the following lemma:

Lemma 3.1 Let y ∈ A. If there exists x0 ∈ (0, Ly) such that y(x0) = α(x0) and

y′(x0) ≤ α′(x0) then

y(x) < α′(x0)(x− x0) + α(x0) =: lx0(x) < α(x) for all x ∈ (x0, Ly).

Proof. Notice that the graph of the function lx0 defined in the statement is

nothing but the tangent to the graph of α at the point (x0, α(x0)), which is

below α because α is convex.

The assumptions y(x0) = α(x0), y′(x0) ≤ α′(x0), and y′′(x0) = f(x0, α(x0)) =

0 < α′′(x0), imply that y < α on (x0, x0 + δ) for some δ > 0, and therefore

y′′(x) < 0 on (x0, x0 + δ) because f is negative below α. This implies that

y(x) < lx0(x) for all x ∈ (x0, x0 + δ).

We use a contradiction argument to prove our lemma: assume that there

exists x1 > x0 such that

y(x) < lx0(x) for all x ∈ (x0, x1) and y(x1) = lx0(x1).
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Then y′′(x) < 0 for all x ∈ (x0, x1) which, together with y′(x0) ≤ l′x0
(x0) and

y(x0) = lx0(x0), yield y(x1) < lx0(x1), a contradiction. ut

Now we show that solutions of (1.1) are greater than the lower solution α

near zero and they eventually go below it. Thus, in particular, solutions do not

blow–up (this is a consequence of the sublinearity of the right–hand side).

Proposition 3.1 For every y ∈ A there exists xy ∈ (0, Ly) such that y > α

on (0, xy) and y < α on (xy, Ly). Therefore, we can define T y = xy and, in

particular, y is convex on [0, xy] and concave on [xy, Ly).

Proof. We divide the proof into steps for better readability.

Step 1. There exists a decreasing sequence {xn}n∈N of positive numbers which

tends to zero and y(xn) > α(xn) for all n ∈ N. Reasoning by contradiction,

assume there exists δ > 0 such that y ≤ α on [0, δ]. Hence y′′ ≤ 0 on [0, δ], and

therefore y(x) ≤ 0 for x ∈ [0, δ], which is impossible.

Step 2. There exists δ > 0 such that y > α on (0, δ). If not, there exists a

decreasing sequence {sn}n∈N which tends to zero and y(sn) ≤ α(sn). For each

n ∈ N we can find m ∈ N, m ≥ n, such that xm < sn (xm as in Step 1), and the

Bolzano’s theorem yields the existence of some zn ∈ (xm, sn] such that y > α

on (xm, zn) and y(zn) = α(zn). In particular, y′(zn) ≤ α′(zn), and then Lemma

3.1 ensures

y(x) < α′(zn)(x− zn) + α(zn) for all x ∈ (zn, Ly). (3.13)

Now let x ∈ (0, Ly) be fixed and notice that (3.13) holds for all sufficiently

large values of n ∈ N, so letting n tend to infinity in (3.13) we obtain y(x) ≤ 0,

a contradiction.

Finally, we prove that xy in the conditions of the statement exists. By

Lemma 3.1 and the information obtained in Step 2, it suffices to prove that

there exists x ∈ (0, Ly) such that y(x) ≤ α(x). Assume, on the contrary, that

y > α on (0, Ly). Then y′′ is positive on (0, Ly) and both y and y′ are increasing

and positive on (0, Ly).
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Let us prove that Ly = +∞. If not, we have two possibilities: either

lim
x→L−y

y(x) = y∞ < +∞ and lim
x→L−y

y′(x) = +∞, (3.14)

or

lim
x→L−y

y(x) = +∞, (3.15)

since otherwise the solution can be extended past Ly.

Next we show that neither (3.14) nor (3.15) are possible. First, if (3.14)

holds then for a fixed x0 ∈ (0, Ly) and every x ∈ (x0, Ly) we have

y′(x) = y′(x0) +
∫ x

x0

f(s, y(s))ds ≤ y′(x0) +
∫ Ly

x0

f(s, y∞)ds,

hence the second identity in (3.14) cannot be fulfilled.

Second, we assume that (3.15) is satisfied. Let x0 ∈ (0, Ly) be such that

y(x0) = 1 and y(x) ≥ 1 for all x ∈ (x0, Ly), so that

y′′(x) ≤ y(x)

4x
8/3
0

for all x ∈ (x0, Ly). (3.16)

Multiplying in (3.16) by y′ and integrating between x0 and x ∈ (x0, Ly) we

arrive at

y′
2(x) ≤ 1

4x
8/3
0

y2(x)− 1

4x
8/3
0

+ y′
2(x0)

≤ max

{
1

4x
8/3
0

, y′
2(x0)

}
(y2(x) + 1) ≤ max

{
1

4x
8/3
0

, y′
2(x0)

}
2y2(x),

so for x ∈ (x0, Ly) we have

y′(x) ≤ c y(x)

c =

√√√√2 max

{
1

4x
8/3
0

, y′2(x0)

} ,

which implies that

y(x) ≤ y(x0)ec(x−x0) for x ∈ (x0, Ly),

a contradiction with (3.15). The proof that Ly = +∞ is complete.
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Notice that y′ cannot be bounded above on (0,+∞), because in that case y

would be sublinear and it would eventually go below α, which has a superlinear

growth. Therefore y′(x) tends to +∞ as x tends to +∞. This enables us to use

the L’Hôpital rule in the following computations:

lim
x→+∞

y′′(x)x1/2 = lim
x→+∞

y1/3(x)
4x13/6

= lim
x→+∞

y′(x)
26x7/6y2/3(x)

= lim
x→+∞

f(x, y(x))
91
3 x1/6y2/3(x) + 52

3 x7/6y−1/3(x)y′(x)

= lim
x→+∞

y1/3(x)
4x8/3

(
91
3 x1/6y2/3(x) + 52

3 x7/6y−1/3(x)y′(x)
)

= lim
x→+∞

y2/3(x)
364
3 x17/6y(x) + 208

3 x23/6y′(x)
= 0,

and thus, once again by virtue of the L’Hôpital rule, we obtain

lim
x→+∞

y(x)
α(x)

= lim
x→+∞

y′′(x)
α′′(x)

= 0,

a contradiction with y > α on (0,+∞). ut

Next we prove that all solutions of (1.1) go below β near zero.

Proposition 3.2 If y ∈ A then there exists εy ∈ (0, 1/4) such that y(x) <

β(x) = x3/2 for x ∈ (0, εy).

Proof. First, notice that it is impossible to have y ≥ β on [0, ε] for some ε > 0,

because in that case we would have

y′′(x) = f(x, y(x)) ≥ f(x, β(x)) =
1

12x13/6
for all x ∈ (0, ε],

so y′′ would not be integrable on (0, ε], a contradiction. Therefore, there exists

a decreasing sequence {xn}n∈N that converges to zero such that y(xn) < β(xn)

for all n ∈ N and x1 ≤ 1/4.

Now we use a contradiction argument: suppose that we can find s ∈ (0, x1)

such that y(s) ≥ β(s). Let n ∈ N be so large that 0 < xn < s < x1. By virtue

of the Bolzano’s theorem, there exist a ∈ (xn, s] such that y < β on (xn, a) and

y(a) = β(a). Notice that y′(a) ≥ β′(a) and

y′′(a) = f(a, y(a)) = f(a, β(a)) > β′′(a),
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hence there exists δ > 0 such that y > β on (a, a + δ). Moreover, we have

a < x1, so we can find b ∈ (a, x1) such that

y(x) > β(x) for all x ∈ (a, b) and y(b) = β(b).

Now for x ∈ (a, b) we have

y′′(x) = f(x, y(x)) > f(x, β(x)) > β′′(x),

and therefore y(b) > β(b), a contradiction. ut

T : A → (0,∞) is one–to–one. As a consequence of the following Proposi-

tion we deduce that each point in the graph of α is crossed by, at most, one

solution.

Proposition 3.3 Let y1, y2 ∈ A. If y1(x0) ≤ y2(x0) for some x0 > 0 then

y1 ≤ y2 on the intersection of their domains.

Proof. Let yi (i = 1, 2) be two solutions in the conditions of the statement for

some x0 > 0, and assume that the lemma is not true, i.e., assume that there

exists x1 > 0 such that y1(x1) > y2(x1). Two cases are possible: either x1 < x0

or x0 < x1.

If x1 < x0 then there exist a, b ∈ R such that 0 ≤ a < x1 < b ≤ x0,

y1 − y2 > 0 on (a, b), and (y1 − y2)(a) = 0 = (y1 − y2)(b). (3.17)

Since f(x, y) is increasing with respect to y, we have for x ∈ (a, b) that

(y1 − y2)′′(x) = f(x, y1(x))− f(x, y2(x)) > 0,

so y1 − y2 is convex on [a, b], a contradiction with (3.17).

If x0 < x1 then there exists x2 ∈ [x0, x1) such that y1(x2) = y2(x2) and

y1 > y2 on (x2, x1]. Notice that y′1(x2) = y′2(x2) implies y1 = y2 on [x2, x2 + δ]

for some δ > 0 by virtue of the Lipschitz theorem, a contradiction with y1 > y2

on (x2, x1], therefore we have y′1(x2) > y′2(x2). Hence we can find a ∈ R such

that 0 ≤ a < x2 and

y2 − y1 > 0 on (a, x2), (y2 − y1)(a) = 0 = (y2 − y1)(x2),

15



a contradiction with (y2 − y1)′′ > 0 on (a, x2). ut

T : A → (0,∞) is surjective. Now we prove that every point in the graph of

α is actually crossed by one solution of (1.1).

Proposition 3.4 For each x0 > 0 there exists y ∈ A such that y(x0) = α(x0).

Proof. We define the set S of all those s > 0 such that there is ys a solution to

(1.1) satisfying ys(s) = α(s). Notice that at least (0, 1/4] ⊂ S, as we deduce by

means of Theorem 2.2, the lower solution α and the upper solution β on each

interval [0, s], s ∈ (0, 1/4].

Next we prove that S is an open interval.

First, we show that S is connected. Let si ∈ S, i = 1, 2, be such that

s1 < s2; we are going to prove that [s1, s2] ⊂ S. To do so, we fix an arbitrary

s ∈ (s1, s2) and we take y2, a solution of (1.1) such that y2(s2) = α(s2). Plainly,

α and y2 are, respectively, lower and upper solutions of (1.1) on [0, s]. Moreover,

Proposition 3.1 guarantees that y2 ≥ α on [0, s], so Theorem 2.2 ensures the

existence of a solution of (1.1), say y = y(x), such that α ≤ y ≤ y2 on [0, s] and

y(s) = α(s). Hence s ∈ S.

Second, we show that S is open. Let s0 ∈ S be fixed, and let y0 : [0, s0+δ] →

R (δ > 0) be the solution of (1.1) such that y0(s0) = α(s0). Proposition 3.2

ensures that we can find ε0 ∈ (0, 1/4) such that

y0(x) < β(x) for all x ∈ (0, ε0),

which implies that y′0(x0) < β′(x0) for some x0 ∈ (0, ε). Now we define a

function

β̂(x) =


β(x) if 0 ≤ x ≤ x0,

y0(x) + β(x0)− y0(x0) if x0 < x ≤ s0 + δ,

which is an upper solution of (1.1) on [0, s0 + δ] because β̂ > y0, so for x ∈

(x0, s0 + δ] we have

β̂′′(x) = y′′0 (x) = f(x, y0(x)) < f(x, β̂(x)),
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and β̂′−(x0) = β′(x0) > y′0(x0) = β̂′+(x0).

Now Theorem 2.2, the lower solution α and the upper solution β̂ on [0, s0+δ̂],

where δ̂ ∈ (0, δ) is chosen so that β̂(s0+δ̂) ≥ α(s0+δ̂), imply that (0, s0+δ̂] ⊂ S,

so s0 is an interior point of S. Since x0 was arbitrarily fixed, we conclude that

S is open. Therefore, S is an open interval because it is open and connected,

so there exists s∞ ∈ (0,+∞] such that S = (0, s∞) and then it only remains to

prove that s∞ = +∞.

Assume that s∞ < +∞, let {sn}n∈N be an increasing sequence of positive

real numbers which converges to s∞ and let {yn}n∈N be a sequence of solutions

of (1.1) such that y(sn) = α(sn) for all n ∈ N. In order to deal only with

positive derivatives, we redefine yn to be α on [sn, s∞].

Now for all n ∈ N and all x ∈ [0, s∞], x 6= sn, we have 0 ≤ y′n(x) ≤ α′(s∞) =:

C, and then, up to a subsequence, {yn}n∈N converges uniformly on [0, s∞] to

some continuous function y∞ : [0, s∞] → [0,+∞).

Notice that yn ≤ yn+1 on [0, s∞] for all n ∈ N, as one can deduce by means

of the ideas in the proof of Proposition 3.3, and thus the monotone convergence

theorem ensures for all x ∈ [0, s∞) that

C ≥ lim
n→∞

y′n(x) = lim
n→∞

∫ x

0

f(r, yn(r))dr =
∫ x

0

f(r, y∞(r))dr.

In particular, the composition f(·, y∞(·)) ∈ L1(0, s∞).

The dominated convergence theorem yields for x ∈ [0, s∞) that

y∞(x) = lim
n→∞

yn(x) = lim
n→∞

∫ x

0

y′n(s)ds =
∫ x

0

∫ s

0

f(r, y∞(r))drds,

so y∞ is a solution of (1.1) such that y∞(s∞) = α(s∞). This means that s∞ ∈ S,

so S is not open, a contradiction. ut

3.2.2 Proof of Theorem 3.3

Since solutions are (strictly) concave when their graphs go below that of α, we

only have two possibilities for y ∈ A with T y = xy: either y′ > 0 on [xy, Ly),

which implies that Ly = +∞, or y′ vanishes at some point in (xy, Ly), which

implies that y tends to zero as x tends to Ly < +∞.
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We start proving the following claim.

Claim 1– There exists x0 ∈ (0, 1) such that if y ∈ A with T y = x0 then

Ly < +∞ and lim
x→L−y

y(x) = 0.

Assume that the claim is false, i.e., for every x0 ∈ (0, 1) the solution y of

(1.1) such that y(x0) = α(x0) is defined on [0,+∞).

By Lemma 3.1, we have

y(x) < lx0(x) < α(1) = (2/3)3/2 for x ∈ (1, x1),

where x1 > 1 solves lx0(x1) = α(1). In particular, x1 depends linearly on x0

and x1 tends to +∞ as x0 tends to zero.

We compute

y′(x1) = y′(1) +
∫ x1

1

f(s, y(s))ds ≤ y′(x0) +
∫ x1

1

f(s, α(1))ds

≤ α′(x0)−
1
10

√
3
2

1

x
5/3
1

+
1
4

√
3
2

1

x
2/3
1

− 3
20

√
3
2

=: g(x0).

Notice that

lim
x0→0+

g(x0) = − 3
20

√
3
2

< 0,

so there exists δ ∈ (0, 1) such that g(x0) < 0 provided that x0 ∈ (0, δ), and

therefore, the corresponding solution y has negative derivative at x1. Since y is

concave on the right of x0, we conclude that y is defined on some finite interval

[0, Ly) and tends to zero as x tends to Ly, a contradiction. The claim is proven.

Next we show that solutions defined on the whole of [0,+∞) exist:

Claim 2– There exists x0 > 1 such that if y ∈ A and T y = x0 then Ly = +∞.

First, we extend linearly the definition of the upper solution β(x) = x3/2,

x ∈ [0, 1/4], as follows: let β̂ = β on [0, 1/4] and for x ≥ 1/4 define

β̂(x) =
3
4
c

(
x− 1

4

)
+

1
8

where c < 1.

According to Definition 2.1, β̂ is an upper solution on the interval [0, x0], where

β̂(x0) = α(x0).
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Notice that 11/16 > (2/3)3/2, so for c < 1 sufficiently close to 1 we have

β̂(1) =
11c

16
>

(
2
3

)3/2

= α(1).

This choice of c implies that x0 > 1 and that β̂(x0) > α(1).

By virtue of Theorem 2.2, with the lower solution α and the upper solution β̂

on [0, x0], we conclude that there exists a solution of Problem (1.1), y : [0, Ly) →

R with Ly > x0, and such that

α < y < β̂ on (0, x0) and α(x0) = y(x0) = β̂(x0).

In particular, y′(x0) ≥ β̂′(x0) = β′(1/4) = 3c/4 and y(x) > α(1) on (x0, x0 + ε)

for some ε > 0.

We are going to prove that y > α(1) on (x0, Ly), which yields Ly = ∞, since

otherwise the solution y could be extended on the right of Ly.

Suppose, on the contrary, that there exists x1 > x0 such that y(x) > α(1)

for all x ∈ [x0, x1) and y(x1) = α(1). We then have for x ∈ (x0, x1)

y′′(x) = f(x, y(x)) > f(x, α(1)) =
1

2
√

6x8/3
− 1

2
√

6x5/3
,

whence

y′(x) > y′(x0) +
1

2
√

6

(∫ x

x0

s−8/3ds−
∫ x

x0

s−5/3ds

)
=

3c

4
+

1
2
√

6

(
−3

5
x−5/3 +

3
5
x
−5/3
0 +

3
2
x−2/3 − 3

2
x
−2/3
0

)
>

1
2
√

6

(
3
2
− 3

5

)
x−5/3 +

3c

4
− 3

4
√

6
> 0, if c is close to 1.

Therefore y is increasing on (x0, x1), a contradiction with y(x1) = α(1) <

y(x0). Claim 2 is proven.

Now we define S as the set of all those real numbers s > 0 such that T y = s

implies Ly < +∞ and y tends to zero as x tends to Ly. Claim 1 shows that S

is not empty.

Next we prove that s0 = supS exists and satisfies all the properties in the

statement. We divide the proof into three steps for better readability.
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Step 1– S is bounded above. Let x0 > 1 be as in Claim 2 and let y0 be the solution

of (1.1) which fulfills y0(x0) = α(x0). We are going to prove that x0 is an upper

bound for S. Reasoning by contradiction, assume that there exists s ∈ S such

that s > x0, and let y ∈ A such that T y = s. Since y(x0) > α(x0) = y0(x0),

Proposition 3.3 yields y > y0 > 0 on [0, Ly), hence

lim
x→L−y

y0(x) = 0,

and y′′0 does not exist at Ly, a contradiction.

Step 2– If y ∈ A and T y = s < s0 then s ∈ S, i.e.,

Ly < +∞ and lim
x→L−y

y(x) = 0.

Let y ∈ A be such that T y = s for some s < s0, and fix s∗ ∈ S, s∗ > s. Let

y∗ : [0, Ly∗) → R be the solution of (1.1) such that y∗(s∗) = α(s∗). We have

y∗(s) > α(s) = y(s) so Proposition 3.3 ensures y∗ ≥ y on the intersection of

their domains, hence Ly ≤ Ly∗ and

lim
x→L−y

y(x) = 0,

since otherwise we would have

lim
x→Ly∗−

y(x) = 0,

and y′′ would not exist at Ly∗ .

Step 3– If y ∈ A and T y = s ≥ s0 then Ly = +∞. The result is an immediate

consequence of the definition of supremum in case s > s0. Now we focus our

attention in the case s = s0.

Reasoning by contradiction once again, we assume that T y = s0 and Ly <

+∞. We construct an upper solution above y as in the proof of Proposition 3.4:

there exists δ ∈ (0, 1/4) such that the function

β̂(x) =

{
β(x) if 0 ≤ x ≤ δ,

y(x) + β(δ)− y(δ) if δ < x < Ly,
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is an upper solution of (1.1) on [0, Ly) with β̂′−(δ) > β̂′+(δ). We use Theorem

2.2 with this upper solution and the lower solution y to deduce the existence

of a solution ŷ > y on (0, Ly) such that ŷ(Ly) < y(s0). Since y(s0) < ŷ(s0),

we deduce that ŷ′ is negative near Ly, so ŷ cannot be extended to [0,+∞).

Moreover, ŷ(r) = α(r) for some r > s0, hence r ∈ S and r > s0, a contradiction.
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