A note on fixed points theorems for T - monotone operators. *

Alberto Cabada and José Ángel Cid
Departamento de Análise Matemática, Facultade de Matemáticas, Universidade de Santiago de Compostela, Galicia, Spain
E-mail : cabada@usc.es, angelcid@usc.es

[^0]Keywords and phrases: T - monotone operators, fixed point theorems, lower and upper solutions, Monotone iterative techniques.

AMS Mathematics Subject Classification: 47H10, 47H05, 47H07

Short Running Title: Fixed points theorems for T - monotone operators.

Mailing address:

Alberto Cabada,
Departamento de Análise Matemática,
Facultade de Matemáticas,
Universidade de Santiago de Compostela,
15782, Santiago de Compostela, Galicia
Spain
FAX number: 34981597054
E-mail: cabada@usc.es

Abstract

This paper contains two contributions of the theory of T-monotone operators introduced by Chen. First, we prove a new fixed point theorem for a discontinuous T-monotone mapping. After, we use this theory to obtain the solution of a classical continuous problem, for which the usual iterative methods fail.

1 Introduction

The concept of a T-monotone operator A, that is, $A+T$ is nondecreasing, was introduced by Chen in [1], where he proves that the classical monotone method for nondecreasing and condensing maps is valid to this much larger class of operators. Later, Syau gave in [2] some new fixed points theorems for T-monotone operators.

In section 2 we use the generalized iterative technique for discontinuous monotone operators of Heikkilä and Lakshmikantham [3] to obtain the existence of extremal fixed points for discontinuous T-monotone operators improving some results of [2].

In section 3 we present an example which shows that the theory of T-monotone operators is applicable to an initial value problem for a first order differential equation, even when the classical monotone method and the Picard iterates fail to converge to its solution.

2 A new fixed point theorem

Let E be a real Banach space ordered by a cone K, i.e. $x \leq y$ if and only if $y-x \in K$. The cone K is regular if every nondecreasing sequence which is order bounded from above is already convergent. We point out that the cone of almost everywhere nonnegative functions in the space $L^{p}(\Omega), 1 \leq p<\infty$, with Ω
an open and bounded set of \mathbb{R}^{n}, is regular. For more examples of Banach spaces with regular cone see section 5.8 in [3].

Let $A: D \subset E \rightarrow E$ and $T: E \rightarrow E$ be two operators. We say that A is a T-monotone operator if

$$
A x-A y \geq T y-T x, \quad x \geq y, \quad x, y \in D,
$$

that is, if operator $A+T$ is nondecreasing in D.
Assume now that there is an operator $T: E \rightarrow E$ satisfying:
(C1) T is nondecreasing in E, and
(C2) There exists $\lambda \in(0,1]$ such that $\lambda I+T: E \rightarrow E$ is one to one and $(\lambda I+T)^{-1}$ is nondecreasing in E.

Note that we do not impose to operator A and T to be continuous.
On the other hand, when operator T is linear, hypothesis $(C 1)$ and $(C 2)$ are conditions ($T 1$) and ($T 2$) in [1].

The proof of the next lemma, which is fundamental in our work, is similar to the ones given in lemmas 1, 3 and 4 of [1] and we omit it.

Lemma 2.1 Let $u_{0}, v_{0} \in E, u_{0} \leq v_{0}, A:\left[u_{0}, v_{0}\right] \rightarrow E$ a T - monotone operator such that $u_{0} \leq A u_{0}$ and $A v_{0} \leq v_{0}$. Moreover suppose that operator T satisfies conditions (C1) and (C2) for some $\lambda \in(0,1]$ fixed. Then the following operator

$$
\begin{equation*}
S:=(\lambda I+T)^{-1}(\lambda A+T):\left[u_{0}, v_{0}\right] \rightarrow E, \tag{2.1}
\end{equation*}
$$

satisfies that:
i) $x \in\left[u_{0}, v_{0}\right]$ and $S x=x$ if and only if $x \in\left[u_{0}, v_{0}\right]$ and $A x=x$.
ii) S is nondecreasing in $\left[u_{0}, v_{0}\right]$.
iii) $S\left(\left[u_{0}, v_{0}\right]\right) \subset\left[u_{0}, v_{0}\right]$.

Next theorem is the main result of this section and improves theorems 3.1 and 3.2 in [2].

Theorem 2.2 Let K be a regular cone, $u_{0}, v_{0} \in E$, $u_{0} \leq v_{0}, A:\left[u_{0}, v_{0}\right] \rightarrow E$ be T-monotone with $u_{0} \leq A u_{0}$ and $A v_{0} \leq v_{0}$, and suppose that T satisfies (C1) and (C2).

Then A has the minimal fixed point x_{*} and the maximal fixed point x^{*} in $\left[u_{0}, v_{0}\right]$, which are characterized by the following properties:

$$
\begin{equation*}
x_{*}=\min \left\{x \in\left[u_{0}, v_{0}\right]: A x \leq x\right\}, x^{*}=\max \left\{x \in\left[u_{0}, v_{0}\right]: A x \geq x\right\} \tag{2.2}
\end{equation*}
$$

Moreover defining the sequences

$$
u^{0}=u_{0}, u^{m}=\lim _{n \rightarrow \infty} S^{n} u^{m-1} \quad \text { and } \quad v^{0}=v_{0}, v^{m}=\lim _{n \rightarrow \infty} S^{n} v^{m-1}
$$

for all $m \in \mathbb{N}$, where S is the operator defined in (2.1), we have that:
a) $u^{0} \leq u^{m} \leq u^{m+1} \leq x_{*} \leq x^{*} \leq v^{m+1} \leq v^{m} \leq v^{0} \quad$ for all $m \in \mathbb{N}$.
b) $x_{*}=u^{m}$ if and only if $u^{m}=A u^{m}$. This holds if S is left continuous at u^{m}.
c) $x^{*}=v^{m}$ if and only if $v^{m}=A v^{m}$. This holds if S is right continuous at v^{m}.
d) If S is left continuous, then $x_{*}=u^{1}=\lim _{n \rightarrow \infty} S^{n} u^{0}$.
e) If S is right continuous, then $x^{*}=v^{1}=\lim _{n \rightarrow \infty} S^{n} v^{0}$.

Proof. By lemma 2.1 ii), iii) we have that operator $S:\left[u_{0}, v_{0}\right] \rightarrow\left[u_{0}, v_{0}\right]$ is nondecreasing. Thus, since K is regular, we have that $\left\{S x_{n}\right\}_{n \in \mathbb{N}}$ is a convergent sequence whenever $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a monotone one. Then theorem 1.2.2 in [3] ensures the existence of the minimal fixed point x_{*} and the maximal fixed point x^{*} of S in $\left[u_{0}, v_{0}\right]$, which are characterized by

$$
\begin{equation*}
x_{*}=\min \left\{x \in\left[u_{0}, v_{0}\right]: S x \leq x\right\}, x^{*}=\max \left\{x \in\left[u_{0}, v_{0}\right]: S x \geq x\right\} . \tag{2.3}
\end{equation*}
$$

From lemma 2.1, i) it follows then that x_{*} and x^{*} are the minimal and the maximal fixed points of A in $\left[u_{0}, v_{0}\right]$, respectively. Moreover, since $S x \leq(\geq) x$ if and only if $A x \leq(\geq) x$, from (2.3) we obtain (2.2).

Finally, claims a) $-e$) follow by applying corollary 1.2.2 in [3] to operator S and taking into account that, by lemma 2.1, i), $x=S x$ if and only if $x=A x$.

Now, we deduce the following particular case of theorem 2.2, which gives us a useful form to apply the previous existence result and imposes a one - sided Lipschitz condition in operator A.

Corollary 2.3 Let K be a regular cone, $u_{0}, v_{0} \in E, u_{0} \leq v_{0}, A:\left[u_{0}, v_{0}\right] \rightarrow E$ be an operator for which there is a real constant $M \geq 0$ such that

$$
\begin{equation*}
A x-A y \geq M(y-x), \quad x \geq y, \quad x, y \in\left[u_{0}, v_{0}\right] \tag{2.4}
\end{equation*}
$$

and such that $u_{0} \leq A u_{0}$ and $A v_{0} \leq v_{0}$.
Then A has the minimal fixed point x_{*} and the maximal fixed point x^{*} in $\left[u_{0}, v_{0}\right]$, which are characterized by (2.2).

Moreover, defining $u^{1}=\lim _{n \rightarrow \infty} u_{n}$ and $v^{1}=\lim _{n \rightarrow \infty} v_{n}$ where

$$
u_{n}=\frac{1}{M+1} A u_{n-1}+\frac{M}{M+1} u_{n-1} \quad \text { and } \quad v_{n}=\frac{1}{M+1} A v_{n-1}+\frac{M}{M+1} v_{n-1},
$$ for all $n \in \mathbb{N}$, we have that:

a) $u_{0} \leq u_{n} \leq u_{n+1} \leq u^{1} \leq x_{*} \leq x^{*} \leq v^{1} \leq v_{n+1} \leq v_{n} \leq v_{0} \quad$ for all $n \in \mathbb{N}$.
b) $x_{*}=u^{1}$ if and only if $u^{1}=A u^{1}$. This holds if A is left continuous at u^{1}.
c) $x^{*}=v^{1}$ if and only if $v^{1}=A v^{1}$. This holds if A is right continuous at v^{1}.

Proof. Condition (2.4) says us that A is T-monotone, defining $T x \equiv M x$ for all $x \in E$. Furthermore T satisfies assumptions (C1) and (C2) whit $\lambda=1$. Then, taking into account that operator S defined in (2.1) is given, in this particular situation, by

$$
S x=\frac{1}{M+1} A x+\frac{M}{M+1} x \quad \text { for all } x \in\left[u_{0}, v_{0}\right]
$$

that S is nondecreasing and that the lateral continuity of S is equivalent to the lateral continuity of A, the assertions follow from theorem 2.2 .

3 A nontrivial example

In this section, we use the theory of T-monotone operators to approximate the unique solution of an initial value problem where the classical Picard iterates [4] do not converge and the monotone method coupled with lower and upper solutions [5] is not applicable.

To this end, consider the Cauchy problem

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \text { for all } t \in I=[0,1], \quad x(0)=0, \tag{3.1}
\end{equation*}
$$

where $f: I \times \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(t, x)=\left\{\begin{array}{cl}
-2 t, & \text { if } t \in[0,1], x \geq t^{2} \\
2 t-\frac{4 x}{t}, & \text { if } t \in(0,1], 0 \leq x \leq t^{2} \\
2 t, & \text { if } t \in[0,1], x \leq 0
\end{array}\right.
$$

Although f is continuous, and therefore its study does not require the specific development of fixed points theorems for discontinuous operators, we have chosen this example due to the fact that problem (3.1) is a classical initial value problem for which the sequence of successive Picard approximations does not converge to a solution. Moreover, since $f(t, \cdot)$ is nonincreasing we have that if problem (3.1) has a solution then it is unique (see [4], page 41).

On the other hand, the functions

$$
u_{0}(t)=-t^{2} \quad \text { and } \quad v_{0}(t)=t^{2} \quad \text { for all } t \in I
$$

are a lower and an upper solution of (3.1) respectively, and then theorem 1.1.4 in [5] ensures that there exists a solution x of (3.1) such that $u_{0}(t) \leq x(t) \leq v_{0}(t)$ for all $t \in I$. Therefore the unique solution of problem (3.1) lies between u_{0} and v_{0}.

We remark that the classical monotone iterative technique exposed at theorem 1.2.1 in [5] is not applicable to problem (3.1) since it does not exist $M \geq 0$ such that

$$
f(t, x)-f(t, y) \geq-M(x-y) \quad \text { for all } t \in I \text { and }-t^{2} \leq y \leq x \leq t^{2}
$$

Clearly, the solutions of (3.1) are the fixed points of operator $A: \mathcal{C}(I) \rightarrow \mathcal{C}(I)$ defined by

$$
A x(t)=\int_{0}^{t} f(s, x(s)) d s \quad \text { for all } t \in I
$$

It is easy to verify that the set $K=\left\{c v_{0}: c \geq 0\right\}$, is a regular cone in $\mathcal{C}(I)$. For given $x, y \in \mathcal{C}(I)$, the partial ordering induced by K in $\mathcal{C}(I)$, which we will denote by \preceq, is the following:

$$
x \preceq y \text { if and only if there exists } c=c(x, y) \geq 0 \text { such that } y-x=c v_{0} .
$$

It is obvious that $u_{0} \preceq v_{0}$ and that

$$
\left[u_{0}, v_{0}\right]:=\left\{x \in \mathcal{C}(I): u_{0} \preceq x \preceq v_{0}\right\}=\left\{c v_{0}: c \in[-1,1]\right\} .
$$

Since $A u_{0}=v_{0}$ and $A v_{0}=u_{0}$ we have that

$$
u_{0} \preceq A u_{0} \quad \text { and } \quad A v_{0} \preceq v_{0} .
$$

Now, define $T x \equiv 2 x$ for all $x \in C(I)$. We are going to prove that operator A is T-monotone in $\left[u_{0}, v_{0}\right]$. Let $x, y \in\left[u_{0}, v_{0}\right]$ such that $x \succeq y$. Then $y=c_{1} v_{0}$ and $x=c_{2} v_{0}$, with $c_{1}, c_{2} \in[-1,1], c_{1} \leq c_{2}$ and we have that:
i) If $c_{1}, c_{2} \in[-1,0]$, then $A y(t)-A x(t)=0 \quad$ for all $t \in I$.
ii) If $c_{1} \in[-1,0]$ and $c_{2} \in(0,1]$, then $A y(t)-A x(t)=2 x(t) \quad$ for all $t \in I$.
iii) If $c_{1}, c_{2} \in(0,1]$, then $A y(t)-A x(t)=2(x(t)-y(t)) \quad$ for all $t \in I$.

Therefore it holds that

$$
A x-A y \succeq 2(y-x), \text { for all } x, y \in\left[u_{0}, v_{0}\right] \text { such that } x \succeq y .
$$

As consequence, operator A satisfies (2.4) for $M=2$. From the continuity of function f respect to the second variable, we deduce that operator A is continuous too. Now corollary 2.3 ensures us that the sequences

$$
u_{n}=\frac{1}{3} A u_{n-1}+\frac{2}{3} u_{n-1} \quad \text { and } \quad v_{n}=\frac{1}{3} A v_{n-1}+\frac{2}{3} v_{n-1} \quad \text { for all } n \in \mathbb{N},
$$

converge to the minimal fixed point x_{*} and to the maximal fixed point x^{*} of A in [u_{0}, v_{0}], respectively. It is easy to verify that

$$
\begin{gathered}
u_{1}(t)=-\frac{1}{3} t^{2}, \quad u_{2}(t)=\frac{1}{9} t^{2} \quad \text { and } \quad u_{n}(t)=\frac{1}{3} t^{2} \quad \text { for all } n \geq 3 \\
v_{n}(t)=\frac{1}{3} t^{2} \quad \text { for all } n \geq 1,
\end{gathered}
$$

and then

$$
x_{*}(t)=x^{*}(t)=\frac{1}{3} t^{2} \quad \text { for all } t \in I,
$$

is the unique fixed point of A and therefore it is also the unique solution of (3.1).

Acknowledgement

The authors thank the referee for helpful suggestions.

References

[1] Chen, Y. Z., Fixed points of T-monotone operators, Nonlinear Anal. 24 (8) 1281-1287 (1995).
[2] Syau, Y. R., Some fixed point theorems of T-monotone operators, J. Math. Anal. Appl. 205 (2) 325-329 (1997).
[3] Heikkilä, S. and Lakshmikantham, V., Monotone iterative techniques for discontinuous nonlinear differential equations, Marcel Dekker, New York, (1994).
[4] Hartman, P., Ordinary differential equations, John Wiley \& Sons, New York (1964).
[5] Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S., Monotone iterative techniques for nonlinear differential equations, Pitman, London, (1985).

[^0]: *First author supported by D. G. I. project BFM2001-3884-C02-01, Spain.

