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Abstract

This paper contains two contributions of the theory of T–monotone op-

erators introduced by Chen. First, we prove a new fixed point theorem for

a discontinuous T–monotone mapping. After, we use this theory to obtain

the solution of a classical continuous problem, for which the usual iterative

methods fail.

1 Introduction

The concept of a T–monotone operator A, that is, A+T is nondecreasing, was

introduced by Chen in [1], where he proves that the classical monotone method for

nondecreasing and condensing maps is valid to this much larger class of operators.

Later, Syau gave in [2] some new fixed points theorems for T–monotone operators.

In section 2 we use the generalized iterative technique for discontinuous mono-

tone operators of Heikkilä and Lakshmikantham [3] to obtain the existence of

extremal fixed points for discontinuous T–monotone operators improving some

results of [2].

In section 3 we present an example which shows that the theory of T–monotone

operators is applicable to an initial value problem for a first order differential

equation, even when the classical monotone method and the Picard iterates fail to

converge to its solution.

2 A new fixed point theorem

Let E be a real Banach space ordered by a cone K, i.e. x ≤ y if and only

if y − x ∈ K. The cone K is regular if every nondecreasing sequence which is

order bounded from above is already convergent. We point out that the cone of

almost everywhere nonnegative functions in the space Lp(Ω), 1 ≤ p < ∞, with Ω
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an open and bounded set of Rn, is regular. For more examples of Banach spaces

with regular cone see section 5.8 in [3].

Let A : D ⊂ E → E and T : E → E be two operators. We say that A is a

T -monotone operator if

Ax− Ay ≥ Ty − Tx, x ≥ y, x, y ∈ D,

that is, if operator A + T is nondecreasing in D.

Assume now that there is an operator T : E → E satisfying:

(C1) T is nondecreasing in E, and

(C2) There exists λ ∈ (0, 1] such that λI+T : E → E is one to one and (λI+T )−1

is nondecreasing in E.

Note that we do not impose to operator A and T to be continuous.

On the other hand, when operator T is linear, hypothesis (C1) and (C2) are

conditions (T1) and (T2) in [1].

The proof of the next lemma, which is fundamental in our work, is similar to

the ones given in lemmas 1, 3 and 4 of [1] and we omit it.

Lemma 2.1 Let u0, v0 ∈ E, u0 ≤ v0, A : [u0, v0] → E a T− monotone operator

such that u0 ≤ Au0 and Av0 ≤ v0. Moreover suppose that operator T satisfies

conditions (C1) and (C2) for some λ ∈ (0, 1] fixed. Then the following operator

S := (λI + T )−1(λA + T ) : [u0, v0] → E, (2.1)

satisfies that:

i) x ∈ [u0, v0] and S x = x if and only if x ∈ [u0, v0] and A x = x.

ii) S is nondecreasing in [u0, v0].

iii) S([u0, v0]) ⊂ [u0, v0].
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Next theorem is the main result of this section and improves theorems 3.1 and

3.2 in [2].

Theorem 2.2 Let K be a regular cone, u0, v0 ∈ E, u0 ≤ v0, A : [u0, v0] → E be

T -monotone with u0 ≤ Au0 and Av0 ≤ v0, and suppose that T satisfies (C1) and

(C2).

Then A has the minimal fixed point x∗ and the maximal fixed point x∗ in [u0, v0],

which are characterized by the following properties:

x∗ = min {x ∈ [u0, v0] : Ax ≤ x}, x∗ = max {x ∈ [u0, v0] : Ax ≥ x}. (2.2)

Moreover defining the sequences

u0 = u0, um = lim
n→∞

Snum−1 and v0 = v0, vm = lim
n→∞

Snvm−1,

for all m ∈ N, where S is the operator defined in (2.1), we have that:

a) u0 ≤ um ≤ um+1 ≤ x∗ ≤ x∗ ≤ vm+1 ≤ vm ≤ v0 for all m ∈ N.

b) x∗ = um if and only if um = Aum. This holds if S is left continuous at um.

c) x∗ = vm if and only if vm = Avm. This holds if S is right continuous at vm.

d) If S is left continuous, then x∗ = u1 = lim
n→∞

Snu0.

e) If S is right continuous, then x∗ = v1 = lim
n→∞

Snv0.

Proof. By lemma 2.1 ii), iii) we have that operator S : [u0, v0] → [u0, v0] is

nondecreasing. Thus, since K is regular, we have that {Sxn}n∈N is a convergent

sequence whenever {xn}n∈N is a monotone one. Then theorem 1.2.2 in [3] ensures

the existence of the minimal fixed point x∗ and the maximal fixed point x∗ of S

in [u0, v0], which are characterized by

x∗ = min{x ∈ [u0, v0] : Sx ≤ x}, x∗ = max{x ∈ [u0, v0] : Sx ≥ x}. (2.3)

5



From lemma 2.1, i) it follows then that x∗ and x∗ are the minimal and the

maximal fixed points of A in [u0, v0], respectively. Moreover, since Sx ≤ (≥)x if

and only if Ax ≤ (≥)x, from (2.3) we obtain (2.2).

Finally, claims a)–e) follow by applying corollary 1.2.2 in [3] to operator S and

taking into account that, by lemma 2.1, i), x = Sx if and only if x = Ax. ut

Now, we deduce the following particular case of theorem 2.2, which gives us

a useful form to apply the previous existence result and imposes a one – sided

Lipschitz condition in operator A.

Corollary 2.3 Let K be a regular cone, u0, v0 ∈ E, u0 ≤ v0, A : [u0, v0] → E be

an operator for which there is a real constant M ≥ 0 such that

Ax− Ay ≥ M(y − x), x ≥ y, x, y ∈ [u0, v0], (2.4)

and such that u0 ≤ Au0 and Av0 ≤ v0.

Then A has the minimal fixed point x∗ and the maximal fixed point x∗ in [u0, v0],

which are characterized by (2.2).

Moreover, defining u1 = lim
n→∞

un and v1 = lim
n→∞

vn where

un =
1

M + 1
Aun−1 +

M

M + 1
un−1 and vn =

1

M + 1
Avn−1 +

M

M + 1
vn−1,

for all n ∈ N, we have that:

a) u0 ≤ un ≤ un+1 ≤ u1 ≤ x∗ ≤ x∗ ≤ v1 ≤ vn+1 ≤ vn ≤ v0 for all n ∈ N.

b) x∗ = u1 if and only if u1 = Au1. This holds if A is left continuous at u1.

c) x∗ = v1 if and only if v1 = Av1. This holds if A is right continuous at v1.

Proof. Condition (2.4) says us that A is T -monotone, defining Tx ≡ Mx for

all x ∈ E. Furthermore T satisfies assumptions (C1) and (C2) whit λ = 1. Then,

taking into account that operator S defined in (2.1) is given, in this particular

situation, by

Sx =
1

M + 1
Ax +

M

M + 1
x for all x ∈ [u0, v0],
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that S is nondecreasing and that the lateral continuity of S is equivalent to the

lateral continuity of A, the assertions follow from theorem 2.2. ut

3 A nontrivial example

In this section, we use the theory of T–monotone operators to approximate the

unique solution of an initial value problem where the classical Picard iterates [4]

do not converge and the monotone method coupled with lower and upper solutions

[5] is not applicable.

To this end, consider the Cauchy problem

x′(t) = f(t, x(t)), for all t ∈ I = [0, 1], x(0) = 0, (3.1)

where f : I × R → R is defined by

f(t, x) =


−2t, if t ∈ [0, 1], x ≥ t2,

2t− 4x

t
, if t ∈ (0, 1], 0 ≤ x ≤ t2,

2t, if t ∈ [0, 1], x ≤ 0.

Although f is continuous, and therefore its study does not require the specific

development of fixed points theorems for discontinuous operators, we have chosen

this example due to the fact that problem (3.1) is a classical initial value problem

for which the sequence of successive Picard approximations does not converge to

a solution. Moreover, since f(t, ·) is nonincreasing we have that if problem (3.1)

has a solution then it is unique (see [4], page 41).

On the other hand, the functions

u0(t) = −t2 and v0(t) = t2 for all t ∈ I,

are a lower and an upper solution of (3.1) respectively, and then theorem 1.1.4 in

[5] ensures that there exists a solution x of (3.1) such that u0(t) ≤ x(t) ≤ v0(t) for

all t ∈ I. Therefore the unique solution of problem (3.1) lies between u0 and v0.
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We remark that the classical monotone iterative technique exposed at theorem

1.2.1 in [5] is not applicable to problem (3.1) since it does not exist M ≥ 0 such

that

f(t, x)− f(t, y) ≥ −M(x− y) for all t ∈ I and −t2 ≤ y ≤ x ≤ t2.

Clearly, the solutions of (3.1) are the fixed points of operator A : C(I) → C(I)

defined by

Ax(t) =

∫ t

0

f(s, x(s))ds for all t ∈ I.

It is easy to verify that the set K = {cv0 : c ≥ 0}, is a regular cone in C(I).

For given x, y ∈ C(I), the partial ordering induced by K in C(I), which we will

denote by �, is the following:

x � y if and only if there exists c = c(x, y) ≥ 0 such that y − x = cv0.

It is obvious that u0 � v0 and that

[u0, v0] := {x ∈ C(I) : u0 � x � v0} = {cv0 : c ∈ [−1, 1]}.

Since Au0 = v0 and Av0 = u0 we have that

u0 � Au0 and Av0 � v0.

Now, define T x ≡ 2 x for all x ∈ C(I). We are going to prove that operator A

is T -monotone in [u0, v0]. Let x, y ∈ [u0, v0] such that x � y. Then y = c1 v0 and

x = c2 v0, with c1, c2 ∈ [−1, 1], c1 ≤ c2 and we have that:

i) If c1, c2 ∈ [−1, 0], then Ay(t)− Ax(t) = 0 for all t ∈ I.

ii) If c1 ∈ [−1, 0] and c2 ∈ (0, 1], then Ay(t)− Ax(t) = 2x(t) for all t ∈ I.

iii) If c1, c2 ∈ (0, 1], then Ay(t)− Ax(t) = 2(x(t)− y(t)) for all t ∈ I.

Therefore it holds that

Ax− Ay � 2(y − x), for all x, y ∈ [u0, v0] such that x � y.
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As consequence, operator A satisfies (2.4) for M = 2. From the continuity of

function f respect to the second variable, we deduce that operator A is continuous

too. Now corollary 2.3 ensures us that the sequences

un =
1

3
Aun−1 +

2

3
un−1 and vn =

1

3
Avn−1 +

2

3
vn−1 for all n ∈ N,

converge to the minimal fixed point x∗ and to the maximal fixed point x∗ of A in

[u0, v0], respectively. It is easy to verify that

u1(t) = −1

3
t2, u2(t) =

1

9
t2 and un(t) =

1

3
t2 for all n ≥ 3,

vn(t) =
1

3
t2 for all n ≥ 1,

and then

x∗(t) = x∗(t) =
1

3
t2 for all t ∈ I,

is the unique fixed point of A and therefore it is also the unique solution of (3.1).
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