A note on fixed points theorems for T- monotone operators. *

Alberto Cabada and José Ángel Cid

Departamento de Análise Matemática, Facultade de Matemáticas,

Universidade de Santiago de Compostela, Galicia, Spain

E-mail: cabada@usc.es, angelcid@usc.es

^{*}First author supported by D. G. I. project BFM2001-3884-C02-01, Spain.

Keywords and phrases: T- monotone operators, fixed point theorems, lower and upper solutions, Monotone iterative techniques.

AMS Mathematics Subject Classification: 47H10, 47H05, 47H07

Short Running Title: Fixed points theorems for T- monotone operators.

Mailing address:

Alberto Cabada,

Departamento de Análise Matemática,

Facultade de Matemáticas,

Universidade de Santiago de Compostela,

15782, Santiago de Compostela, Galicia

Spain

FAX number: 34 981 59 70 54

E-mail: cabada@usc.es

Abstract

This paper contains two contributions of the theory of T-monotone operators introduced by Chen. First, we prove a new fixed point theorem for a discontinuous T-monotone mapping. After, we use this theory to obtain the solution of a classical continuous problem, for which the usual iterative methods fail.

1 Introduction

The concept of a T-monotone operator A, that is, A + T is nondecreasing, was introduced by Chen in [1], where he proves that the classical monotone method for nondecreasing and condensing maps is valid to this much larger class of operators. Later, Syau gave in [2] some new fixed points theorems for T-monotone operators.

In section 2 we use the generalized iterative technique for discontinuous monotone operators of Heikkilä and Lakshmikantham [3] to obtain the existence of extremal fixed points for discontinuous T-monotone operators improving some results of [2].

In section 3 we present an example which shows that the theory of T-monotone operators is applicable to an initial value problem for a first order differential equation, even when the classical monotone method and the Picard iterates fail to converge to its solution.

2 A new fixed point theorem

Let E be a real Banach space ordered by a cone K, i.e. $x \leq y$ if and only if $y - x \in K$. The cone K is regular if every nondecreasing sequence which is order bounded from above is already convergent. We point out that the cone of almost everywhere nonnegative functions in the space $L^p(\Omega)$, $1 \leq p < \infty$, with Ω

an open and bounded set of \mathbb{R}^n , is regular. For more examples of Banach spaces with regular cone see section 5.8 in [3].

Let $A:D\subset E\to E$ and $T:E\to E$ be two operators. We say that A is a T-monotone operator if

$$Ax - Ay \ge Ty - Tx$$
, $x \ge y$, $x, y \in D$,

that is, if operator A + T is nondecreasing in D.

Assume now that there is an operator $T: E \to E$ satisfying:

- (C1) T is nondecreasing in E, and
- (C2) There exists $\lambda \in (0, 1]$ such that $\lambda I + T : E \to E$ is one to one and $(\lambda I + T)^{-1}$ is nondecreasing in E.

Note that we do not impose to operator A and T to be continuous.

On the other hand, when operator T is linear, hypothesis (C1) and (C2) are conditions (T1) and (T2) in [1].

The proof of the next lemma, which is fundamental in our work, is similar to the ones given in lemmas 1, 3 and 4 of [1] and we omit it.

Lemma 2.1 Let $u_0, v_0 \in E$, $u_0 \leq v_0$, $A : [u_0, v_0] \to E$ a T- monotone operator such that $u_0 \leq Au_0$ and $Av_0 \leq v_0$. Moreover suppose that operator T satisfies conditions (C1) and (C2) for some $\lambda \in (0, 1]$ fixed. Then the following operator

$$S := (\lambda I + T)^{-1}(\lambda A + T) : [u_0, v_0] \to E,$$
(2.1)

satisfies that:

- i) $x \in [u_0, v_0]$ and Sx = x if and only if $x \in [u_0, v_0]$ and Ax = x.
- ii) S is nondecreasing in $[u_0, v_0]$.
- *iii*) $S([u_0, v_0]) \subset [u_0, v_0]$.

Next theorem is the main result of this section and improves theorems 3.1 and 3.2 in [2].

Theorem 2.2 Let K be a regular cone, $u_0, v_0 \in E$, $u_0 \leq v_0$, $A : [u_0, v_0] \to E$ be T-monotone with $u_0 \leq Au_0$ and $Av_0 \leq v_0$, and suppose that T satisfies (C1) and (C2).

Then A has the minimal fixed point x_* and the maximal fixed point x^* in $[u_0, v_0]$, which are characterized by the following properties:

$$x_* = \min\{x \in [u_0, v_0] : Ax \le x\}, \ x^* = \max\{x \in [u_0, v_0] : Ax \ge x\}.$$
 (2.2)

Moreover defining the sequences

$$u^{0} = u_{0}, \ u^{m} = \lim_{n \to \infty} S^{n} u^{m-1} \quad and \quad v^{0} = v_{0}, \ v^{m} = \lim_{n \to \infty} S^{n} v^{m-1},$$

for all $m \in \mathbb{N}$, where S is the operator defined in (2.1), we have that:

a)
$$u^0 \le u^m \le u^{m+1} \le x_* \le x^* \le v^{m+1} \le v^m \le v^0$$
 for all $m \in \mathbb{N}$.

- b) $x_* = u^m$ if and only if $u^m = Au^m$. This holds if S is left continuous at u^m .
- c) $x^* = v^m$ if and only if $v^m = Av^m$. This holds if S is right continuous at v^m .
- d) If S is left continuous, then $x_* = u^1 = \lim_{n \to \infty} S^n u^0$.
- e) If S is right continuous, then $x^* = v^1 = \lim_{n \to \infty} S^n v^0$.

Proof. By lemma 2.1 ii), iii) we have that operator $S : [u_0, v_0] \to [u_0, v_0]$ is nondecreasing. Thus, since K is regular, we have that $\{Sx_n\}_{n\in\mathbb{N}}$ is a convergent sequence whenever $\{x_n\}_{n\in\mathbb{N}}$ is a monotone one. Then theorem 1.2.2 in [3] ensures the existence of the minimal fixed point x_* and the maximal fixed point x^* of S in $[u_0, v_0]$, which are characterized by

$$x_* = \min\{x \in [u_0, v_0] : Sx \le x\}, \ x^* = \max\{x \in [u_0, v_0] : Sx \ge x\}.$$
 (2.3)

From lemma 2.1, i) it follows then that x_* and x^* are the minimal and the maximal fixed points of A in $[u_0, v_0]$, respectively. Moreover, since $Sx \leq (\geq)x$ if and only if $Ax \leq (\geq)x$, from (2.3) we obtain (2.2).

Finally, claims a)-e) follow by applying corollary 1.2.2 in [3] to operator S and taking into account that, by lemma 2.1, i), x = Sx if and only if x = Ax.

Now, we deduce the following particular case of theorem 2.2, which gives us a useful form to apply the previous existence result and imposes a one – sided Lipschitz condition in operator A.

Corollary 2.3 Let K be a regular cone, $u_0, v_0 \in E$, $u_0 \leq v_0$, $A : [u_0, v_0] \to E$ be an operator for which there is a real constant $M \geq 0$ such that

$$Ax - Ay \ge M(y - x), \quad x \ge y, \quad x, y \in [u_0, v_0],$$
 (2.4)

and such that $u_0 \leq Au_0$ and $Av_0 \leq v_0$.

Then A has the minimal fixed point x_* and the maximal fixed point x^* in $[u_0, v_0]$, which are characterized by (2.2).

Moreover, defining $u^1 = \lim_{n \to \infty} u_n$ and $v^1 = \lim_{n \to \infty} v_n$ where

$$u_n = \frac{1}{M+1}Au_{n-1} + \frac{M}{M+1}u_{n-1}$$
 and $v_n = \frac{1}{M+1}Av_{n-1} + \frac{M}{M+1}v_{n-1}$,

for all $n \in \mathbb{N}$, we have that:

a)
$$u_0 \le u_n \le u_{n+1} \le u^1 \le x_* \le x^* \le v^1 \le v_{n+1} \le v_n \le v_0$$
 for all $n \in \mathbb{N}$.

- b) $x_* = u^1$ if and only if $u^1 = Au^1$. This holds if A is left continuous at u^1 .
- c) $x^* = v^1$ if and only if $v^1 = Av^1$. This holds if A is right continuous at v^1 .

Proof. Condition (2.4) says us that A is T-monotone, defining $Tx \equiv Mx$ for all $x \in E$. Furthermore T satisfies assumptions (C1) and (C2) whit $\lambda = 1$. Then, taking into account that operator S defined in (2.1) is given, in this particular situation, by

$$Sx = \frac{1}{M+1}Ax + \frac{M}{M+1}x$$
 for all $x \in [u_0, v_0]$,

that S is nondecreasing and that the lateral continuity of S is equivalent to the lateral continuity of A, the assertions follow from theorem 2.2.

3 A nontrivial example

In this section, we use the theory of T-monotone operators to approximate the unique solution of an initial value problem where the classical Picard iterates [4] do not converge and the monotone method coupled with lower and upper solutions [5] is not applicable.

To this end, consider the Cauchy problem

$$x'(t) = f(t, x(t)), \text{ for all } t \in I = [0, 1], \quad x(0) = 0,$$
 (3.1)

where $f: I \times \mathbb{R} \to \mathbb{R}$ is defined by

$$f(t,x) = \begin{cases} -2t, & \text{if } t \in [0,1], \ x \ge t^2, \\ 2t - \frac{4x}{t}, & \text{if } t \in (0,1], \ 0 \le x \le t^2, \\ 2t, & \text{if } t \in [0,1], \ x \le 0. \end{cases}$$

Although f is continuous, and therefore its study does not require the specific development of fixed points theorems for discontinuous operators, we have chosen this example due to the fact that problem (3.1) is a classical initial value problem for which the sequence of successive Picard approximations does not converge to a solution. Moreover, since $f(t,\cdot)$ is nonincreasing we have that if problem (3.1) has a solution then it is unique (see [4], page 41).

On the other hand, the functions

$$u_0(t) = -t^2$$
 and $v_0(t) = t^2$ for all $t \in I$,

are a lower and an upper solution of (3.1) respectively, and then theorem 1.1.4 in [5] ensures that there exists a solution x of (3.1) such that $u_0(t) \leq x(t) \leq v_0(t)$ for all $t \in I$. Therefore the unique solution of problem (3.1) lies between u_0 and v_0 .

We remark that the classical monotone iterative technique exposed at theorem 1.2.1 in [5] is not applicable to problem (3.1) since it does not exist $M \geq 0$ such that

$$f(t,x) - f(t,y) \ge -M(x-y)$$
 for all $t \in I$ and $-t^2 \le y \le x \le t^2$.

Clearly, the solutions of (3.1) are the fixed points of operator $A: \mathcal{C}(I) \to \mathcal{C}(I)$ defined by

$$Ax(t) = \int_0^t f(s, x(s))ds$$
 for all $t \in I$.

It is easy to verify that the set $K = \{cv_0 : c \geq 0\}$, is a regular cone in $\mathcal{C}(I)$. For given $x, y \in \mathcal{C}(I)$, the partial ordering induced by K in $\mathcal{C}(I)$, which we will denote by \leq , is the following:

$$x \leq y$$
 if and only if there exists $c = c(x, y) \geq 0$ such that $y - x = cv_0$.

It is obvious that $u_0 \leq v_0$ and that

$$[u_0, v_0] := \{x \in \mathcal{C}(I) : u_0 \leq x \leq v_0\} = \{cv_0 : c \in [-1, 1]\}.$$

Since $Au_0 = v_0$ and $Av_0 = u_0$ we have that

$$u_0 \leq Au_0$$
 and $Av_0 \leq v_0$.

Now, define $T x \equiv 2 x$ for all $x \in C(I)$. We are going to prove that operator A is T-monotone in $[u_0, v_0]$. Let $x, y \in [u_0, v_0]$ such that $x \succeq y$. Then $y = c_1 v_0$ and $x = c_2 v_0$, with $c_1, c_2 \in [-1, 1]$, $c_1 \leq c_2$ and we have that:

- i) If $c_1, c_2 \in [-1, 0]$, then Ay(t) Ax(t) = 0 for all $t \in I$.
- ii) If $c_1 \in [-1, 0]$ and $c_2 \in (0, 1]$, then Ay(t) Ax(t) = 2x(t) for all $t \in I$.
- iii) If $c_1, c_2 \in (0, 1]$, then Ay(t) Ax(t) = 2(x(t) y(t)) for all $t \in I$.

Therefore it holds that

$$Ax - Ay \succeq 2(y - x)$$
, for all $x, y \in [u_0, v_0]$ such that $x \succeq y$.

As consequence, operator A satisfies (2.4) for M=2. From the continuity of function f respect to the second variable, we deduce that operator A is continuous too. Now corollary 2.3 ensures us that the sequences

$$u_n = \frac{1}{3}Au_{n-1} + \frac{2}{3}u_{n-1}$$
 and $v_n = \frac{1}{3}Av_{n-1} + \frac{2}{3}v_{n-1}$ for all $n \in \mathbb{N}$,

converge to the minimal fixed point x_* and to the maximal fixed point x^* of A in $[u_0, v_0]$, respectively. It is easy to verify that

$$u_1(t) = -\frac{1}{3}t^2$$
, $u_2(t) = \frac{1}{9}t^2$ and $u_n(t) = \frac{1}{3}t^2$ for all $n \ge 3$, $v_n(t) = \frac{1}{3}t^2$ for all $n \ge 1$,

and then

$$x_*(t) = x^*(t) = \frac{1}{3}t^2$$
 for all $t \in I$,

is the unique fixed point of A and therefore it is also the unique solution of (3.1).

Acknowledgement

The authors thank the referee for helpful suggestions.

References

- [1] Chen, Y. Z., Fixed points of *T*-monotone operators, *Nonlinear Anal.* **24** (8) 1281–1287 (1995).
- [2] Syau, Y. R., Some fixed point theorems of *T*-monotone operators, *J. Math. Anal. Appl.* **205** (2) 325–329 (1997).
- [3] Heikkilä, S. and Lakshmikantham, V., Monotone iterative techniques for discontinuous nonlinear differential equations, Marcel Dekker, New York, (1994).
- [4] Hartman, P., Ordinary differential equations, John Wiley & Sons, New York (1964).

[5] Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S., Monotone iterative techniques for nonlinear differential equations, Pitman, London, (1985).