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Abstract

This paper contains two contributions of the theory of T—monotone op-
erators introduced by Chen. First, we prove a new fixed point theorem for
a discontinuous T—monotone mapping. After, we use this theory to obtain
the solution of a classical continuous problem, for which the usual iterative

methods fail.

1 Introduction

The concept of a T—monotone operator A, that is, A+ T is nondecreasing, was
introduced by Chen in [1], where he proves that the classical monotone method for
nondecreasing and condensing maps is valid to this much larger class of operators.
Later, Syau gave in [2] some new fixed points theorems for T—monotone operators.

In section 2 we use the generalized iterative technique for discontinuous mono-
tone operators of Heikkild and Lakshmikantham [3] to obtain the existence of
extremal fixed points for discontinuous 7T—monotone operators improving some
results of [2].

In section 3 we present an example which shows that the theory of T-monotone
operators is applicable to an initial value problem for a first order differential
equation, even when the classical monotone method and the Picard iterates fail to

converge to its solution.

2 A new fixed point theorem

Let E be a real Banach space ordered by a cone K, i.e. x < y if and only
if y— 2 € K. The cone K is regular if every nondecreasing sequence which is
order bounded from above is already convergent. We point out that the cone of

almost everywhere nonnegative functions in the space L(Q2), 1 < p < oo, with



an open and bounded set of R", is regular. For more examples of Banach spaces
with regular cone see section 5.8 in [3].
Let A: D CE — Fand T : E — FE be two operators. We say that A is a

T-monotone operator if
Ax_Aszy_Txa $2y, .’L’,yED,

that is, if operator A + T is nondecreasing in D.

Assume now that there is an operator T : £ — E satisfying:
(C1) T is nondecreasing in E, and

(C2) There exists A € (0,1] such that \[+T : E — E is one to one and (\[+7)~*

is nondecreasing in F.

Note that we do not impose to operator A and 1" to be continuous.

On the other hand, when operator T is linear, hypothesis (C'1) and (C2) are
conditions (7'1) and (72) in [1].

The proof of the next lemma, which is fundamental in our work, is similar to

the ones given in lemmas 1, 3 and 4 of [1] and we omit it.

Lemma 2.1 Let ug,vg € E, ug < vy, A : [ug,v0] — E a T— monotone operator
such that ug < Aug and Avy < vg. Moreover suppose that operator T satisfies

conditions (C1) and (C2) for some X € (0,1] fized. Then the following operator
S:=N+T)"NA+T) : [ug,v0] — E, (2.1)
satisfies that:
i) x € [ug,vo] and Sx = x if and only if x € [ug, vo] and Az = x.
ii) S is nondecreasing in [ug, v.

iii) S([uo, vo]) C [uo, vo].



Next theorem is the main result of this section and improves theorems 3.1 and

3.21n [2].

Theorem 2.2 Let K be a reqular cone, ug,vg € E, ug < vy, A : [ug,v0] — E be
T-monotone with ug < Aug and Avy < vy, and suppose that T satisfies (C1) and
(C2).

Then A has the minimal fized point x, and the mazimal fized point * in [ug, vol,

which are characterized by the following properties:
x, = min{x € [ug, vo] : Az < x}, " = max{x € [ug,vo] : Ax > x}. (2.2)
Moreover defining the sequences

uw’ =g, u™ = lim S"u™ ' and ° = vy, v™ = lim S"™v™ !,
n—oo n—oo

for all m € N, where S is the operator defined in (2.1), we have that:
a) u® <u™ <yt < g, <gzF <™t <™ < for allm € N.
b) x. =u™ if and only if u™ = Au™. This holds if S is left continuous at u™.
c) x* =v™ if and only if v™ = Av™. This holds if S is right continuous at v™.

d) If S is left continuous, then x, = u' = lim S"u°.

n—oo

e) If S is right continuous, then z* = v' = lim S™°.

n—oo

Proof. By lemma 2.1 1), #i) we have that operator S : [ug,vo] — [uo,vo] is
nondecreasing. Thus, since K is regular, we have that {Sx,},cn is a convergent
sequence whenever {x, },en is @ monotone one. Then theorem 1.2.2 in [3] ensures
the existence of the minimal fixed point z, and the maximal fixed point x* of S

in [ug, v], which are characterized by

T, = min{z € [up, vo] : Sz <z}, x* = max{zx € [ug,vo| : Sx > x}. (2.3)



From lemma 2.1, i) it follows then that x, and z* are the minimal and the
maximal fixed points of A in [ug, vy, respectively. Moreover, since Sx < (>)z if
and only if Az < (>)z, from (2.3) we obtain (2.2).

Finally, claims a)-e) follow by applying corollary 1.2.2 in [3] to operator S and

taking into account that, by lemma 2.1, i), = Sz if and only if x = Ax. O

Now, we deduce the following particular case of theorem 2.2, which gives us
a useful form to apply the previous existence result and imposes a one — sided

Lipschitz condition in operator A.

Corollary 2.3 Let K be a reqular cone, ug,vg € E, ug < vy, A : [ug,v9] — E be

an operator for which there is a real constant M > 0 such that
AiL’-AyZM(y—iL'), 5132% T,y € [U07U0], (24)

and such that vy < Aug and Avg < .
Then A has the minimal fized point x, and the mazimal fixed point * in [ug, vol,
which are characterized by (2.2).

Moreover, defining u* = lim w,, and v' = lim v,, where
’ o0
-

n n—oo

M 1
An_ n— d n — An—
M1 U 1+M+1u 1 an v M1 . 1+M—|—1

Uy = Un—1,
for all n € N, we have that:
a) ug < Up <Uppy <ul <z, <2F<v <y <wv,<wvy foralln €N
b) x. = u' if and only if ut = Au'. This holds if A is left continuous at u'.

c) x* = v if and only if v' = Av'. This holds if A is right continuous at v'.

Proof. Condition (2.4) says us that A is T-monotone, defining Tz = Mz for
all z € E. Furthermore T satisfies assumptions (C1) and (C2) whit A = 1. Then,
taking into account that operator S defined in (2.1) is given, in this particular

situation, by

1
T+

- A
ST= 3 M+1

x  for all x € [ug, vol,



that S is nondecreasing and that the lateral continuity of S is equivalent to the

lateral continuity of A, the assertions follow from theorem 2.2. O

3 A nontrivial example

In this section, we use the theory of T—-monotone operators to approximate the
unique solution of an initial value problem where the classical Picard iterates [4]
do not converge and the monotone method coupled with lower and upper solutions
[5] is not applicable.

To this end, consider the Cauchy problem
2'(t) = f(t,z(t)), forallt € I =[0,1], x(0) =0, (3.1)
where f: I x R — R is defined by

—2t, if te€l0,1], x >3
4
flt,x) = 2t—7$, if te(0,1], 0<z <t

ot, if te0,1], z <0.

Although f is continuous, and therefore its study does not require the specific
development of fixed points theorems for discontinuous operators, we have chosen
this example due to the fact that problem (3.1) is a classical initial value problem
for which the sequence of successive Picard approximations does not converge to
a solution. Moreover, since f(t,-) is nonincreasing we have that if problem (3.1)
has a solution then it is unique (see [4], page 41).

On the other hand, the functions
up(t) = —t* and wo(t) =t foralltel,

are a lower and an upper solution of (3.1) respectively, and then theorem 1.1.4 in
[5] ensures that there exists a solution x of (3.1) such that uy(t) < z(t) < wvy(t) for

all t € I. Therefore the unique solution of problem (3.1) lies between gy and vy.



We remark that the classical monotone iterative technique exposed at theorem
1.2.1 in [5] is not applicable to problem (3.1) since it does not exist M > 0 such

that
ft,z) — f(t,y) > —M(x—y) forallt el and —1*> <y <z < {2

Clearly, the solutions of (3.1) are the fixed points of operator A : C(I) — C(I)
defined by

Ax(t) = /Otf(s,x(s))ds for all t € I.

It is easy to verify that the set K = {cvy : ¢ > 0}, is a regular cone in C(I).
For given z,y € C(I), the partial ordering induced by K in C(I), which we will

denote by =, is the following:
x =y if and only if there exists ¢ = ¢(x,y) > 0 such that y — x = cuvy.
It is obvious that ug < vy and that
[ug,vo] :={z € C(I) :ug 2 x 2o} = {cvy : c € [-1,1]}.
Since Aug = vy and Avg = ug we have that
uy = Aug and Avy < vp.

Now, define Tz = 2z for all x € C(I). We are going to prove that operator A
is T-monotone in [ug, vo]. Let z,y € [ug, vo] such that x > y. Then y = ¢; vy and

T = cavg, With ¢1, ¢ € [=1,1], ¢1 < ¢o and we have that:
i) If ¢1,¢0 € [-1,0], then Ay(t) — Az(t) =0 forallte .
ii) If ¢; € [-1,0] and 5 € (0,1], then Ay(t) — Ax(t) = 2x(t) forallt e I.
iii) If ¢, 2 € (0,1], then Ay(t) — Ax(t) = 2(x(t) — y(t)) forallt e I.
Therefore it holds that

Azx — Ay = 2(y — x), for all z,y € [ug, vo] such that x = y.

8



As consequence, operator A satisfies (2.4) for M = 2. From the continuity of
function f respect to the second variable, we deduce that operator A is continuous

too. Now corollary 2.3 ensures us that the sequences

1 2 1 2
Uy = §A“"—1 + gun_l and v, = gAUn—l + gvn_l for all n € N,

converge to the minimal fixed point z, and to the maximal fixed point z* of A in

[ug, vo|, respectively. It is easy to verify that

1 1 1
uy(t) = —§t2, ug(t) = §t2 and  wu,(t) = §t2 for all n > 3,

1
v (t) = §t2 for all n > 1,

and then

1
z.(t) =2 (t) = §t2 forallt e I,
is the unique fixed point of A and therefore it is also the unique solution of (3.1).
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