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ON COMPARISON PRINCIPLES FOR THE PERIODIC HILL’S EQUATION

ALBERTO CABADA AND J. ÁNGEL CID

Abstract

In this work we make an exhaustive study of the properties of the Green’s function related to the periodic
boundary value problem

La x ≡ x′′ + a(t) x = 0, x(0) = x(T ), x′(0) = x′(T ),

with a sign-changing potential a(t).
Moreover, we obtain new explicit criteria that ensures the maximum or antimaximum principle holds for this

equation. The given criteria complement previous results in the literature.

1. Introduction

The topic of maximum and antimaximum principles related to the Hill’s operator

Lau(t) ≡ u′′(t) + a(t)u(t), t ∈ [0, T ] ≡ I,

with

a : R→ R, a ∈ Lα(I), α ≥ 1 and a(t+ T ) = a(t) a. e. t ∈ R, (1.1)

has been widely studied in the literature [1, 5, 10, 18, 22, 28, 29]. These comparison principles
are fundamental tools when we consider nonlinear boundary value problems and apply, among
others, monotone iterative techniques [11, 13], lower and upper solutions method [3, 7], fixed
points theorems [11, 22] or stability theory [29].

To fix ideas, we will denote by AC1(I) the space of the absolutely continuous functions on I
whose first derivative is also an absolutely continuous function on I and let X be the Banach
space

X = {u ∈ AC1(I), u(0) = u(T ), u′(0) = u′(T )}.

We say that La (with periodic boundary conditions) admits the maximum principle (MP) if
and only if

u ∈ X, Lau ≥ 0 on I =⇒ u ≡ 0 or u < 0 on I,

and La (with periodic boundary conditions) admits the antimaximum principle (AMP) if and
only if

u ∈ X, Lau ≥ 0 on I =⇒ u ≡ 0 or u > 0 on I.

We say that operator La is nonresonant in X if and only if the homogeneous problem

La u(t) = 0 a. e. t ∈ I, u(0) = u(T ), u′(0) = u′(T ), (1.2)

has only the trivial solution.
Of course, if La satisfies MP or AMP then it is nonresonant. Also it is well known that when

La is nonresonant then for all σ ∈ L1(I) the problem

Lau(t) = σ(t), a. e. t ∈ I, u(0) = u(T ), u′(0) = u′(T ), (1.3)
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has a unique solution u ∈ AC1(I) and there is a unique continuous function Ga : I × I → R,
such that

u(t) =

∫T
0

Ga(t, s)σ(s) ds, ∀ t ∈ I, (1.4)

Ga(t, s) being the so-called Green’s function related to the operator La in X.
Moreover one can easily verify that operator La is self-adjoint on X and that this property

is equivalent to the fact that the Green’s function is symmetrical with respect to the diagonal
of its square of definition, that is,

Ga(t, s) = Ga(s, t), ∀ (t, s) ∈ I × I. (1.5)

It is also known that Ga ≥ 0 on I × I is equivalent to the AMP and Ga ≤ 0 on I × I is
equivalent to the MP (see [28, Theorem 4.1]). So every assertion about the constant sign of
the Green’s function Ga is also an assertion about a comparison principle for La.

The paper is organized as follows: in Section 2 we obtain some useful properties concerning
the sign of the periodic Green’s function. In Section 3 we review the known comparison
principles for operator La with periodic boundary conditions. Although optimal conditions
for such comparison principles were obtained in [28] in terms of eigenvalues, Green’s functions
or rotation numbers, new explicit criteria are still welcome. To this end, we obtain a character-
ization for the constant sign of the Green’s function by means of the oscillatory properties of
operator La. In Section 4 we obtain some new explicit criteria for MP and AMP, focusing our
attention mainly into the cases less studied up to now. Finally in Section 5 we present some
examples showing the applicability of our results and comparing them with those available in
the related literature.

Some notation is needed throughout the paper: we will denote by h � 0 a function h ∈
Lα(0, T ) such that h(t) ≥ 0 for a. e. t ∈ I and h 6≡ 0 on I. For 1 ≤ α ≤ ∞ we denote

by α∗ its conjugate, that is,
1

α
+

1

α∗
= 1, (with α = 1 and α∗ = ∞ and vice-versa). Finally,

denoting H1
0 (0, T ) as the usual Sobolev space of the AC1(I) functions that satisfy the Dirichlet

conditions, we define K(α, T ) as the best Sobolev constant in the inequality

C‖u‖2α ≤ ‖u′‖22 for all u ∈ H1
0 (0, T ),

given explicitly by, see [20],

K(α, T ) =


2π

αT 1+2/α

(
2

2 + α

)1−2/α(
Γ(1/α)

Γ(1/2 + 1/α)

)2

, if 1 ≤ α <∞,

4

T
, if α =∞.

We note that in all the paper we assume that potential a satisfies condition (1.1). Moreover
we let Ga denote the T – periodic extension in the two variables of the Green’s function.

2. Properties of the Green’s functions

This section is devoted to the study of some useful properties of the Green’s function related
to operator La coupled with the periodic boundary conditions, that is, defined in the space X.

Let now s ∈ I be given. From the definition of the Green’s function, using the T – periodicity
of the function a, and denoting by xs(·) the function Ga(·, s), it is not difficult to verify that
xs ∈W 2,1(Iks ), where Iks = (s+ k T, s+ (k + 1)T ), and it satisfies the equation

x′′s (t) + a(t)xs(t) = 0, a. e. t ∈ Iks , k ∈ Z. (2.1)
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Lemma 2.1. The four following equalities are equivalent:
(i) Ga(T, 0) = 0.

(ii) Ga(0, T ) = 0.
(iii) Ga(0, 0) = 0.
(iv) Ga(T, T ) = 0.

Proof. Suppose that Ga(T, 0) = 0 then, by (1.5) we deduce that Ga(0, T ) = 0. The rest of
the proof follows by the periodicity of the Green’s function.

Now, we obtain the points in which a constant sign Green’s function can vanish.

Lemma 2.2. Suppose that the Green’s function Ga does not change sign on I × I and Ga
vanishes at some point (t0, s0) ∈ I × I, then t0 = s0, (t0, s0) = (0, T ) or (t0, s0) = (T, 0).

Proof. Suppose, on the contrary, that Ga(t0, s0) = 0 for some (t0, s0) ∈ (0, T )× (0, T ) such
that t0 6= s0. Since Ga(t0, s0) = Ga(s0, t0), we may assume t0 > s0. From equation (2.1), we
know that function

x(t) ≡ Ga(t, s0), t ∈ R,

solves the equation

x′′(t) + a(t)x(t) = 0, a. e. t ∈ (s0, s0 + T ), x(t0) = x′(t0) = 0.

So, Ga(t, s0) = 0 for all t ∈ (s0, s0 + T ). But this contradicts the fact that

∂Ga
∂t

(t+, t)− ∂Ga
∂t

(t−, t) = 1, for all t ∈ R. (2.2)

Remark 2.1. If we consider the constant potential a(t) ≡
(
π
T

)2
, we know that the Green’s

function is strictly positive on I × I except at the diagonal and at the points (0, T ) and (T, 0).
In consequence the previous result is optimal.

Therefore, we arrive at the following conclusion.

Corollary 2.1. If the Green’s function Ga does not change sign on I × I, then, for all
t ∈ I the functions Ga(t, ·) and Ga(·, s) vanish on I in, at most, two points. Even more, in such
a case we have:

(i) If s0 = 0 or s0 = T , then Ga(·, s0) can only vanish at t = 0 and t = T .
(ii) If t0 = 0 or t0 = T , then then Ga(t0, ·) can only vanish at s = 0 and s = T .
(iii) If s0 ∈ (0, T ), then Ga(·, s0) can only vanish at t = s0.
(iv) If t0 ∈ (0, T ), then Ga(t0, ·) can only vanish at s = t0.

Now, we will obtain the relation between the sign of the Green’s function Ga and the
comparison principles for La. Such result is known (see for instance [28, Theorem 4.1]), but
we present a proof for the sake of completeness.

Lemma 2.3. The following claims are equivalent:
(1) Ga(t, s) ≥ 0 (≤ 0) on I × I.
(2) If x ∈ X and La x � 0 on I then x > 0 (< 0) on I.

Proof. First observe that inequality La x � 0 on I is equivalent to the existence of some
σ ∈ L1(I) such that σ � 0 on I, for which equation (1.3) is fulfilled. If the Green’s function
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does not change sign, we deduce the constant sign of x on I as a direct consequence of (1.4)
and Corollary 2.1.

Reciprocally, assume (2) and suppose that Ga changes sign on I × I. Arguing as in [3,
Theorem 3.1], one can find t0 ∈ I and x1, x2 ∈ X such that La x1 � 0, La x2 � 0 on I and
x1(t0)x2(t0) < 0, which is a contradiction with (2).

As a consequence of the two previous results, we deduce the following property for nonpositive
Green’s functions.

Lemma 2.4. If Ga(t, s) ≤ 0 on I × I then Ga(t, s) < 0 on I × I.

Proof. From Lemmas 2.1 and 2.2 we have two possibilities:

(i) There exists t0 ∈ (0, T ) such that Ga(t0, t0) = 0.
Since Ga is nonpositive, we know, from (2.2), that

∂Ga
∂t

(t+0 , t0) =
∂Ga
∂t

(t−0 , t0) + 1 ≥ 1,

which implies that Ga is positive on a right-neighborhood of t0, and we attain a
contradiction.

(ii) Ga(0, 0) = 0.
From (2.1), we have that

x′′0(t) + a(t)x0(t) = 0, a. e. t ∈ Ik0 , k ∈ Z,

and from (2.2) we obtain

x′0(0+) = x′0(0−) + 1 = x′0(T−) + 1.

On the other hand, Lemma 2.1 implies that x0(0) = x0(T ) = 0 and the nonpositiveness
of x give us

x′0(0+) ≤ 0 ≤ x′0(T−) < x′0(0+),

which is a contradiction.

From the definition of xs given in (2.1) and reasoning as in the previous lemmas, we deduce
the following result.

Lemma 2.5. Suppose that the Green’s function Ga does not change sign on I × I. Then it
is nonnegative on I × I and vanishes at some point (t0, t0) ∈ I × I if and only if the equation

x′′(t) + a(t)x(t) = 0, t ∈ (t0, t0 + T ), x(t0) = x(T + t0) = 0

has a non trivial constant sign solution.

Defining now the function

as(t) ≡ a(t+ s), s, t ∈ R.

we arrive at the following result.

Lemma 2.6. For all t, s ∈ R we have Ga(t, s) = Gas(t− s, 0).
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Proof. From the periodicity of Ga and condition (2.2), we have that xs(·) := Ga(·, s) is the
unique solution of the equation

x′′s (t) + a(t)xs(t) = 0, a. e. t ∈ (s, s+ T ), xs(s) = xs(s+ T ), x′s(s
+) = x′s((s+ T )−) + 1.

On the other hand, ys(t) := xs(t+ s) is the unique solution of the equation

y′′s (t) + a(t+ s) ys(t) = 0, a. e. t ∈ (0, T ), ys(0) = ys(T ), y′s(0
+) = y′s(T

−) + 1.

As consequence, xs(s+ t) = Gas(t, 0) or, which is the same, Ga(t, s) ≡ xs(t) = Gas(t− s, 0).

Remark 2.2. We notice that the previous property extends to a non constant potential
a(t) the expression obtained in [3, Lemma 2.1] for constant ones.

Lemma 2.6 allows us to rewrite Lemma 2.5 as follows.

Corollary 2.2. Suppose that the Green’s function Ga does not change sign on I × I.
Then it vanishes at some point (t0, t0) ∈ I × I if and only if the equation

x′′(t) + at0(t)x(t) = 0, t ∈ I, x(0) = x(T ) = 0,

has a non trivial constant sign solution.

Moreover, we deduce the following result.

Lemma 2.7. Let b(t) ≡ a(T − t) for all t ∈ R. Then the following equality holds:

Ga(t, s) = Gb(T − t, T − s) for all t, s ∈ R.

Proof. We know that x(t) := Gas(t, 0) is the unique solution of equation

x′′(t) + a(t+ s)x(t) = 0, a. e. t ∈ (0, T ), x(0) = x(T ), x′(0+) = x′(T−) + 1.

So, y(t) = x(T − t) is the unique solution of equation

y′′(t) + b(t+ s) y(t) = 0, a. e. t ∈ (0, T ), y(0) = y(T ), y′(0+) = y′(T−) + 1,

that is, y(t) := Gas(T − t, 0) = Gbs(t, 0).
Now, from Lemma 2.6 and the properties of the Green’s function, we deduce that

Ga(t, s) = Gas(t− s, 0) = Gbs(T − t+ s, 0)

= Gb(T − t,−s) = Gb(T − t, T − s).

As a consequence of the two previous lemmas we can conclude the following corollary.

Corollary 2.3. Let as and br be defined as in the two previous lemmas for some s, r ∈ I,
then the functions Gas and Gbr take exactly the same values (at different points) on I × I.

To finish this section, we obtain the following comparison results for the Green’s functions
related to different potentials.

Lemma 2.8. Let a1, a2 ∈ Lα(I) be such that the corresponding Green’s functions of the
periodic problem Ga1 and Ga2 do not change sign on I × I and Ga1(t, s)Ga2(t, s) ≥ 0 for all
(t, s) ∈ I × I. If a1 � a2 on I then Ga1(t, s) < Ga2(t, s) for all (t, s) ∈ I × I.
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Proof. Let s ∈ I be given. Denote by xs(·) = Ga1(·, s) and ys(·) = Ga2(·, s). From the
definition of the Green’s functions, we know that

x′′s (t) + a1(t)xs(t) = y′′s (t) + a2(t) ys(t) = 0, a. e. t ∈ (s, s+ T ),

and

xs(s) = xs(s+T ), ys(s) = ys(s+T ), x′s(s
+) = xs((s+T )−)+1, y′s(s

+) = y′s((s+T )−)+1.

Now, for all t ∈ I, we define the functions x̄s(t) := xs(t+ s) and ȳs(t) := ys(t+ s). Therefore

x̄s − ȳs ∈ X.

Suppose now that the Green’s functions are nonnegative (the other case is analogous). In
consequence, from Corollary 2.1 it follows that x̄s > 0 and ȳs > 0 for all t ∈ (0, T ).

Let ε(t) = a1(t)− a2(t) � 0 on I. We have

(ȳs − x̄s)′′(t) + a1(t+ s) (ȳs − x̄s)(t) = ε(t+ s) ȳs(t) � 0, a. e. t ∈ (0, T ),

and we deduce, from Lemma 2.3, that ȳs > x̄s on I, or, which is the same, Ga1(t, s) < Ga2(t, s)
for all (t, s) ∈ I × I.

3. A survey on MP and AMP for operator La

In this section we present the state of the art of comparison principles for the periodic Hill’s
equation. In the first subsection we show a characterization due to M. Zhang by using the
corresponding eigenvalues of the related homogeneous equation. Such characterization allows
us to describe the constant sign Green’s functions from the oscillation properties of operator
La.

3.1. Optimal conditions for MP and AMP

Let λ0(a) be the smallest eigenvalue of the periodic equation

u′′(t) + (a(t) + λ)u(t) = 0, a. e. t ∈ I, u(0) = u(T ), u′(0) = u′(T ),

and let λ1(a) be the smallest eigenvalue of the anti-periodic equation

u′′(t) + (a(t) + λ)u(t) = 0, a. e. t ∈ I, u(0) = −u(T ), u′(0) = −u′(T ).

In [28], M. Zhang obtained the following result (in the paper for T = 1).

Lemma 3.1. [28, Theorem 1.1] Suppose that a ∈ L1(I), then:

(i) La admits MP if and only if λ0(a) > 0.
(ii) La admits AMP if and only if λ0(a) < 0 ≤ λ1(a).

By introducing the parameterized potentials λ + a the previous result can be rewritten as
follows.

Lemma 3.2. [28, Theorem 1.2] Suppose that a ∈ L1(I), then:

(i) Lλ+a admits MP if and only if λ < λ0(a).
(ii) Lλ+a admits AMP if and only if λ0(a) < λ ≤ λ1(a).

Remark 3.1. We point out that in [28] are also given optimal conditions for MP and AMP
in terms of rotation numbers and the sign of the Green’s function. However the characterization
by using eigenvalues, as in Lemma 3.1, is more suitable for our purposes.
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The following explicit bounds for the first periodic and anti-periodic eigenvalues are well-
known:

Lemma 3.3. Suppose that a ∈ L1(I), then:

(i) λ0(a) ≤ − 1
T

∫T
0
a(s)ds and the equality holds if and only if a is constant. (See [27]).

(ii) ‖a+‖α ≤ K(2α∗, T ) =⇒ λ1(a) ≥
( π
T

)2
(

1− ‖a+‖α
K(2α∗, T )

)
≥ 0. (See [29]).

(iii) λ1(a) = min {λD1 (as), s ∈ R}. Here (see [29]) λD1 (as) is the first eigenvalue of the
Dirichlet problem

u′′(t) + (as(t) + λ)u(t) = 0, a. e. t ∈ I, u(0) = u(T ) = 0. (3.1)

Now, as a consequence of the previous result and Lemma 2.8, we arrive at the following
result.

Corollary 3.1. Let a1, a2 ∈ Lα(I) be such that a1 � a2 on I and assume that the
Green’s function of Ga1 and Ga2 have the same constant sign on I × I. Then operator La is
nonresonant in X and Ga has the same constant sign for all a ∈ Lα(I) with a(t) ∈ [a2(t), a1(t)]
for a. e. t ∈ I.

Proof. The proof follows for La nonresonant in X, since for all a ∈ Lα(I) and s ∈ I the
function λs : Lα(I) → R, that assigns to every potential as the first eigenvalue λD1 (as) of the
Dirichlet problem (3.1), is decreasing on as. Now Lemma 3.3, (iii), says us that the same holds
for λ1(a).

Suppose now that Ga1 and Ga2 are non negative (the other case is analogous) and there
is a ∈ Lα(I) with a(t) ∈ [a2(t), a1(t)] such that La is not invertible in X. Then from the
continuous dependence of the Green’s function with respect to its potential and the property
given above, we deduce that the set

{Gb(t, s), (t, s) ∈ I × I,with b ∈ Lα(I) and b(t) ∈ [a2(t), a1(t)]}

is unbounded from below, in contradiction with Lemma 2.8.

As a consequence of the results showed in this section we arrive at the following characteri-
zation of the sign of the Green’s function.

Theorem 3.1. Let R be the infimum of the distance of two consecutive zeroes of a solution
of the equation La x = 0. Then the following assertions hold:

(i) Ga changes sign in I × I if and only if R < T .
(ii) Ga is non negative and vanishes at some points on I × I if and only if R = T .
(iii) Ga has strict constant sign in I × I if and only if R > T .

Proof. If R < T , we have that there is s ∈ I for which at least one solution of the equation
x′′(t) + as(t)x(t) = 0, has two zeroes in I. From classical Sturm – Liouville theory, we have
that λD1 (as), the first eigenvalue of the Dirichlet problem Las x = 0 on I, x(0) = x(T ) = 0, is
strictly negative. In consequence, Lemma 3.3 (iii), implies that λ1(a) < 0. Now, Lemma 3.1
ensures that Ga changes sign on I × I.

When R = T , we conclude, as above, that λ1(a) = 0. So Lemma 3.1 says us that Ga is non
negative on I × I. So, Corollary 2.2 shows that Ga vanishes at some points on I × I.

When R > T we have that Ga has strict constant sign on I × I (strictly positive or strictly
negative) from [22, Theorem 2.1].
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In the next two subsections we present some explicit criteria, in terms of the integral of the
potential a (or a+ and a−) that ensure the validity of the comparison results.

3.2. Explicit criteria for AMP

P. Torres proves the following criteria that ensures the AMP for nonnegative (and not
identically zero) potentials:

Lemma 3.4. [22, Corollary 2.3] Assume that a � 0 and moreover

‖a‖α ≤ K(2α∗, T ).

Then La satisfies the AMP.

The AMP is studied in [5] for non constant sign potentials with positive average.

Lemma 3.5. [5, Theorem 3.2] Assume that

∫T
0

a(t)dt > 0 and moreover

‖a+‖α < K(2α∗, T ).

Then La satisfies the AMP.

In [6], by studying anti-maximum principles for the quasilinear equation

(|u′|p−2u′)′ + a(t) (|u|p−2u) = h(t), u(0) = u(T ), u′(0) = u′(T ),

the previous result is extended to the potentials with nonnegative average as follows

Lemma 3.6. [6, Theorem 3.4 and Remark 3.7] Assume that

∫T
0

a(t)dt ≥ 0, a 6≡ 0, and

moreover

‖a+‖α ≤ K(2α∗, T ). (3.2)

Then La satisfies the AMP.

We point that M. Zhang constructs in [28] some examples of potentials a for which La
admits the AMP but inequality (3.2) does not hold.

3.3. Explicit criteria for MP

When we refer to the study of MP the following general result for non positive (and not
identically zero) potentials was obtained by P. Torres.

Lemma 3.7. [22, Corollary 2.2] If a ≺ 0 then La satisfies the MP.

In [5] the authors obtain the following result.

Lemma 3.8. [5, Theorem 4.1] Assume that a ∈ L1(0, T ) is of the form

a(t) = b′(t)− b2(t), b(0) = b(T ),

∫T
0

b(s)ds 6= 0, (3.3)

where b is an absolutely continuous function, then La satisfies the MP.

Remark 3.2. The main difficulty in order to apply Lemma 3.8 is to determine when
the potential a(t) is of the form (3.3). It is easy to see that if a 6≡ 0 satisfies (3.3) then
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0
a(s)ds < 0, but the converse is false as the following example shows: let a ∈ L∞(0, 1),

a(t) 6≡ 0, put a(t) = ã(t) + ā, where ã(t) has mean value zero and ā =
1

T

∫T
0

a(s)ds is its mean

value, and let us consider the problem:

b′(t)− b2(t) = ã(t) + ā, b(0) = b(1). (3.4)

By making the change u(t) = −b(t), problem (3.4) is equivalent to

u′(t) + u2(t) + ã(t) = −ā, u(0) = u(1), (3.5)

and [17, Corollary 3.1] implies that there exists s0 ∈ R such that

(i) for −ā < s0 problem (3.5) has no solution,
(ii) for −ā = s0 problem (3.5) has at least one solution,

(iii) for −ā > s0 problem (3.5) has at least two solutions.

Since problem (3.5) has no solution for ā = 0, as it is easy to see by integrating the equation
over [0, 1], it follows that s0 > 0. So (i) implies that for mean values satisfying −s0 < ā < 0
problem (3.5) has no solution, and thus there exist potentials with negative average such that
(3.3) has no solution.

Recently, R. Hakl and P. Torres, give the following criterium to ensure the MP.

Lemma 3.9. [10, Corollary 2.5] If a ∈ L1(I), a 6≡ 0, and moreover∫T
0

a+(s)ds <
4

T
,

∫T
0
a+(s)ds

1− T
4

∫T
0
a+(s)ds

≤
∫T
0

a−(s)ds,

then La satisfies the MP.

Under the assumptions of each one of the previous three results it follows that
∫T

0
a(s)ds < 0

and in fact this is a necessary condition.

Proposition 3.1 Necessary condition for MP. If La satisfies the MP then
∫T

0
a(s)ds < 0.

Proof. The results follows from Lemma 3.1, (1) and Lemma 3.3, (i).

Corollary 3.2. Suppose that
∫T

0
a(s)ds ≥ 0. Then the two following assertions hold:

(i) If operator La is nonresonant on X then it does not satisfy the MP.
(ii) λ0(a) ≤ 0.

Proof. The first assertion is just Proposition 3.1. The second one is a direct consequence
of Lemma 3.1, (1), coupled with the first part.

4. Main results

This section is devoted to the study of the indefinite potentials for which the MP or the
AMP holds and the conditions of the explicit criteria presented in the previous section are not
satisfied. In particular, we will pay special attention to the open situations

a 6≺ 0 and
∫T

0
a(t) dt < 0

or/and

‖a+‖p > K(2p∗, T ).
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Firstly, we define the functions va and wa as the unique solutions of the following initial
value problems:

v′′a(t) + a(t) va(t) = 0, a. e. t ∈ I, va(0) = 0, v′a(0) = 1,

and

w′′a(t) + a(t) wa(t) = 0, a. e. t ∈ I, wa(0) = 1, w′a(0) = 0.

Clearly va and wa are a pair of fundamental solutions to the equation Lau = 0. Define now,

Na =

 va(T ) v′a(T )− 1

1− wa(T ) −w′a(T )

 .

In the sequel we use the following characterization of the eigenvalues of problem (1.2), which
is essentially [16, Theorem 2.1]. For a complete study of such equalities, the reader is referred
to [16, Chapter II].

Theorem 4.1. Assume that function a satisfies (1.1), then
(i) λ is a periodic eigenvalue if and only if det (Na+λ) = 0.

(ii) λ is an anti-periodic eigenvalue if and only if det (Na+λ) = 4.
In particular, problem (1.2) is nonresonant if and only if detNa 6= 0.

Example 4.1. Suppose that a(t) ≡ a ∈ R. In this situation, it is not difficult to verify that

va(t) =


sinh
√
−a t√
−a , if a < 0

t, if a = 0

sin
√
a t√
a

, if a > 0,

and wa(t) =


cosh

√
−a t, if a < 0

1, if a = 0

cos
√
a t, if a > 0.

In consequence

detNa =


2 (1− cosh

√
−a T ), if a < 0

0, if a = 0

2 (1− cos
√
a T ), if a > 0.

So, we deduce the very well known result that this problem is nonresonant if and only if
a 6= ( 2nπ

T )2, for all n = 0, 1, . . .

Proposition 4.1. The following assertions hold:
(i) If La admits MP then det(Na) < 0.
(ii) If La admits AMP then det(Na) > 0.

Proof. The proof will be made in four steps.
Claim 1. If a ∈ L∞ and a ≺ 0 then det(Na) < 0.

If a ≺ 0 it is easy to see that wa > 1 and v′a > 1 on I and so

det(Na) = 2− v′a(T )− wa(T ) < 0.

Claim 2. If a ∈ L∞ and La admits MP then det(Na) < 0.
Since a ∈ L∞, from Claim 1 it follows that det(Na+λ) < 0 for each λ < 0 such that a+λ ≺ 0.
On the other hand, the mapping λ ∈ R → det(Na+λ) ∈ R is continuous and vanishes

exactly at the periodic eigenvalues (see Theorem 4.1, (1)). Since λ0(a) is the smallest periodic
eigenvalue, we have that det(Na+λ) has constant sign for all λ < λ0(a). Thus det(Na+λ) < 0
for all λ < λ0(a). From Lemma 3.1, (1), we know that 0 < λ0(a) and we obtain the desired
result, that is, det(Na) < 0.
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Claim 3. If a ∈ L∞ and La admits AMP then det(Na) > 0.
By the same argument as in the previous claim we know that det(Na+λ) has constant sign for

all λ0(a) < λ ≤ λ1(a). Moreover, from Lemma 3.1, (2), it is satisfied that λ0(a) < 0 ≤ λ1(a).
Now, Theorem 4.1, (2), says us that det(Na+λ1(a)) = 4 > 0. In consequence, det(Na) > 0.

Claim 4. If a satisfies (1.1) then (i) and (ii) hold.
Taking into account that L∞ is dense in Lα, the result follows from a standard approximation

procedure.

As a consequence of the proof of the previous result, and using the characterization of M.
Zhang given in Lemma 3.1, we deduce the following equivalent characterization of the MP and
the AMP properties for operator La.

Theorem 4.2. The following properties hold:

(i) La satisfies MP if and only if det(Na+λ) < 0 for all λ ≤ 0.
(ii) La satisfies AMP if and only if det(Na+λ) ≤ 4 for all λ ≤ 0 and det(Na) > 0.

Proof. From Theorem 4.1, the eigenvalues of the periodic problem are given as the roots
of equation det(Na+λ) = 0. In particular, the property det(Na+λ) < 0 for all λ ≤ 0 implies
that λ0(a) > 0. But this last assertion is, from Lemma 3.1 (1), equivalent to ensure the MP
property for operator La.

Assume now that La satisfies MP. As we have seen in the proof of the previous result,
det(Na+λ) < 0 for all λ < λ0(a). Lemma 3.1 (1), shows us that λ0(a) > 0, thus det(Na+λ) < 0
for all λ ≤ 0, and the first part of the enunciate is proved.

To prove the second one, we use that the roots of equation det(Na+λ) = 4 give us the
eigenvalues of the anti-periodic problem. From Lemma 3.1 (2), the proof is a direct consequence
of the following facts:

(i) det(Na+λ) ≤ 4 for all λ ≤ 0 if and only if λ1(a) ≥ 0.
(ii) det(Na) > 0 in and only if λ0(a) < 0.

The first assertion follows from Theorem 4.1 (2), and the fact showed in the proof of the
previous result, that det(Na+λ) < 0 for λ small enough. The second one follows from this last
property and because of λ0(a) is the smallest root of equation det(Na) = 0.

We note that to obtain the explicit expression of det(Na+λ) is in general not possible for non
constant potentials a(t). However there are a lot of very good computer programs, for instance
Maple, Mathematica or Maxima, that allow us to get an approximate numerical expression of
this formula and its corresponding roots.

Finally, we present a more suitable criteria to ensure the MP and the AMP character of
operator La. We note that these conditions depend on the integral of the potential a(t).

Theorem 4.3. Assume ‖ã+‖α ≤ K(2α∗, T ). Then

(i) La satisfies MP if and only if

∫T
0

a(s)ds < 0 and det(Na) < 0.

(ii) If

∫T
0

a(s)ds < 0 and det(Na) > 0 then La satisfies AMP.

(iii) If La is nonresonant in X and 0 ≤
∫T
0

a(s)ds ≤ π2

T

(
1− ‖ã+‖α

K(2α∗, T )

)
then La satisfies

AMP.
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Proof. We write a(t) = ã(t) + λ, where ã(t) has mean value zero and λ =
1

T

∫T
0

a(s)ds is

the mean value of a. Since ‖ã+‖α ≤ K(2α∗, T ) we have by Lemma 3.3, (ii), that λ1(ã) ≥ 0.
Moreover, from Lemma 3.6 and Lemma 3.2, (2), we know that λ0(ã) < 0.

To prove the first assertion, suppose that La satisfies MP. Then by Propositions 3.1 and 4.1
we obtain that

∫T
0
a(s)ds < 0 and det(Na) < 0.

Reciprocally, assume
∫T

0
a(s)ds < 0 and det(Na) < 0. Since det(Na) 6= 0 we have that

La = Lã+λ is nonresonant and from λ =
1

T

∫T
0

a(s)ds < 0 ≤ λ1(ã), it follows, from Lemma 3.2,

that either La admits MP or La admits AMP, depending if either λ < λ0(ã) or λ0(ã) < λ < 0.
Finally, det(Na) < 0 and Proposition 4.1 lead us to conclude that La admits MP.

The second part is deduced by repeating the same argument. From the fact that λ =
1

T

∫T
0

a(s)ds < 0 ≤ λ1(ã), we have that either La admits MP or La admits AMP, so det(Na) > 0

and Proposition 4.1 imply now that La admits AMP.
The last assertion is deduced from Lemma 3.3, (ii), and the following inequalities:

λ0(ã) < 0 ≤ λ =
1

T

∫T
0

a(s)ds ≤
( π
T

)2
(

1− ‖ã+‖α
K(2α∗, T )

)
≤ λ1(ã).

Remark 4.1.
(i) The sufficient part in assertion (1) of Theorem 4.3, that is,

If La satisfies MP then

∫T
0

a(s)ds < 0 and det(Na) < 0,

is valid for all a satisfying (1.1). In fact it is a direct consequence of Propositions 3.1
and 4.1 in which there are no assumptions on ‖ã+‖α.

(ii) Theorem 4.3 (1) and (2) apply for situations not covered in the related literature. Of
course, it remains open to know what happens when the inequality ‖ã+‖α ≤ K(2α∗, T )
is not fulfilled.

(iii) The assertion (3) in Theorem 4.3 is optimal for constant potentials a(t) ≡ k. Moreover,

we notice that if

∫T
0

a(s)ds ≥ 0 then ‖ã+‖α ≤ ‖a+‖α. As a consequence, Theorem 4.3

(3) can cover wider situations than Lemma 3.6.

5. Examples

In this section we present some illustrative examples of our main results.

Example 5.1. Consider the problem

x′′(t) + as(t) x(t) = h(t), for all t ∈ [0, 2], x(0) = x(2), x′(0) = x′(2),

with

as(t) =

−1, if 0 ≤ t < 1,

s, if 1 ≤ t ≤ 2,

and s ∈ R.
Of course, for all s ≤ 0, we have that as ≺ 0 and, as a consequence, operator Las satisfies

the MP.
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Now, let s > 0. In this case
∫2

0
as(t)dt = s−1 and we can check with this family of potentials

the available explicit criteria for MP: Lemma 3.7 doesn’t apply because as is sign-changing.
On the other hand, we were not able to verify if as is of the form (3.3), so Lemma 3.8 is not
useful for us in this case. Finally Lemma 3.9 reads as:

– If 0 < s < 2
3 then Las satisfies the MP.

Now we compare with Theorem 4.3. We have that

ãs(t) =

− s+1
2 , if 0 ≤ t < 1,

s+1
2 , if 1 ≤ t ≤ 2.

Therefore Theorem 4.3 is applicable whenever

‖(ãs)+‖α =
s+ 1

2
≤ max

α≥1
{K(2α∗, 2)} ≈ 2.8125,

that is

0 < s ≤ s̄ ≈ 4.625.

After standard computations one can verify that

det(Nas) =

(
e2 − 1

)
(s− 1) sin(

√
s)− 2

(
1 + e2

)√
s cos(

√
s)

2 e
√
s

+ 2.

4

4

0
s

det(Na )s

Figure 1. Graphic of det(Nas)

So, for s0 ≈ 0.85724 we have that det(Nas0 ) = 0 and det(Nas) < 0 for 0 < s < s0. As
consequence, we deduce from Theorem 4.3 the following properties:

– If 0 < s < s0 then Las satisfies the MP.
– If s0 < s < 1 then Las satisfies the AMP.
Notice that the provided information for the MP case is optimal. Indeed, from Proposition

3.1 we have that a necessary condition for Las to satisfy the MP is that s < 1. Since we have
the AMP when s0 < s < 1 then there is no other possibilities for the MP, that is

– Las satisfies the MP if and only if 0 < s < s0.
On the other hand, we obtain the following estimation for s ≥ 1 in order to obtain the AMP,

1 ≤ s ≤ max
α≥1


(

1 + π2

2 −
π2

K(2α∗,2)

)
(

1 + π2

K(2α∗,2)

)
 ≈ 2.69403.

However, this estimation is not the best possible and in fact the bound given in Lemma 3.6
is better than the previous one:
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1 ≤ s ≤ max
α≥1
{K(2α∗, 2)} ≈ 2.8125.

Moreover, since det(Nas) = 4 for s = s1 ≈ 3.13363 and det(Nas) ∈ (0, 4) for all s ∈ (s0, s1),
we deduce that λ1(as1) = 0. In consequence, from Theorem 4.1 and Lemma 3.2, we have that
Las1 satisfies the AMP.

Now, Corollary 3.1 gives us the following optimal estimate for the AMP:

– Las satisfies the AMP if and only if s ∈ (s0, s1].

In the previous example the estimation given by Theorem 4.3 to ensure the AMP is worse
than the one obtained in Lemma 3.6. Now we present an example where Theorem 4.3 gives a
better estimate for AMP.

Example 5.2. Consider the problem

x′′(t) +
µ

t log2 t
x(t) = h(t), t ∈ [0, 1/2], x(0) = x(1/2), x′(0) = x′(1/2),

with µ a positive constant. To study the values of the parameter µ > 0 for which the MP or the
AMP is ensured, we take into account that the potential aµ(t) := µ

t log2 t
belongs to L1(0, 1/2),

but it does not belong to Lα(0, 1/2) for α > 1.
Since aµ(t) > 0 for all t ∈ (0, 1/2), we have, from Proposition 3.1, that the corresponding

operator Laµ cannot satisfy the MP.
On the other hand, from the fact that ‖(aµ)+‖1 = ‖aµ‖1 = µ/log(2) and K(∞, 1/2) = 8,

applying Lemma 3.6 or Lemma 3.4, we know that Laµ satisfies the AMP for all µ ∈ (0, µ0],
with µ0 = 8 log(2) ≈ 5.54518.

By means of Theorem 4.3, we can improve this estimation as follows: it is obvious that

aµ = 2

∫1/2

0

aµ(s) ds =
2µ

log(2)
.

So, we deduce that

ãµ(t) := aµ(t)− aµ = µ

(
1

t log2 t
− 2

log(2)

)
and

a1 ≡

∥∥∥∥∥
(

1

t log2 t
− 2

log(2)

)
+

∥∥∥∥∥
1

≈ 0.26227.

Thus, Theorem 4.3 (3) is rewritten as

0 < µ ≤ 2π2

1
log(2) + π2

4 a1

≈ 9.44541

which is a substantial improvement of the earlier estimate.
In this case it is not possible to get the explicit expressions of functions vaµ and waµ and, as

a consequence, of det (Naµ). However, we can study the related discrete equation and obtain
this values with a very small error.

In particular, it is known (see [12]) that for a given n ∈ N large enough, the value vaµ(k/(2n)) ≈
y(k), for all k ∈ {1, . . . , n}. Where y : {0, . . . , n} → R is the unique solution of the difference
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equation

y(k + 1)− 2 y(k) + y(k − 1) +
µ

2nk log2(k/(2n))
y(k) = 0, k ∈ {1, . . . , n− 1},

coupled with the initial conditions

y(0) = 0, y(1) = 1/(2n).

In a similar way, we have an approximation of waµ , by considering the initial conditions
y(0) = y(1) = 1.

So by taking n = 106, we estimate the first root of the equation det (Naµ) = 4 by µ = µ1 ≈
11.6053. Using Corollary 3.1 again, we deduce that the operator Laµ satisfies the AMP if and
only if µ ∈ (0, µ1].

Finally, we study the AMP for the Mathieu equation.

Example 5.3. In order to obtain 2π–periodic positive solutions for the Mathieu equation

x′′(t) + (a+ b cos t) x(t) = h(t), t ∈ [0, 2π], x(0) = x(2π), x′(0) = x′(2π), (5.1)

with a ≥ 0, b ∈ R, a2 + b2 > 0 and h � 0, an important tool is the validity of the AMP for
operator

Lx := x′′ + (a+ b cos t) x.

Notice that, since ∫2π

0

(a+ b cos s) ds = 2π a ≥ 0,

only the AMP character of this equation has sense.
Since we have that

‖ ˜(a+ b cos t)+‖α = |b|π 1
2α

(
Γ
(
α+1

2

)
Γ
(
α+2

2

)) 1
α

,

then Theorem 4.3 (3) means

0 ≤ |b| ≤ (1− 4 a) max
α≥1


K(2α∗, 2π)

π
1
2α

(
Γ(α+1

2 )
Γ(α2 +1)

) 1
α

 , (5.2)

which is shown in the Figure 2.
Moreover, as in the previous examples, Lemma 3.6 gives us an alternative estimation of the

admissible values of a and b for which the Green’s function is non negative, in this case

‖(a+ b cos t)+‖ ≤ max
α≥1
{K(2α∗, 2π)} , (5.3)

which is shown in the Figure 2 and, as we can observe, in this case is better that the one
provided by Theorem 4.3 (3).
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1/2

-1/2

0
1/4

a

b

Figure 2. Admissible values of a and b to get the AMP for the Mathieu equation (wider
set) together with the graphs of (5.3) (middle) and (5.2) (smaller).

By using computational methods it is possible to approximate det(Na+b cos t+λ) (see Figure
3) and for instance we have obtained:

– λ1(0) = 1/4,
– λ1((cos t)/4)) ≈ 0.17766,
– λ1(2 (cos t)/5) ≈ 0.031914,
– λ1((cos t)/2) ≈ −0.027562.

4

1/20 1/4

det 

λ 

Figure 3. Determinant related to (5.1) for a = 0 and b = 0, 1/4, 2/5, 1/2 (from below to
above).

Remark 5.1. The Brillouin-beam focusing equation

x′′(t) + a(1 + cos(t))x(t) =
1

x(t)
,

appears in the study of Electronics, and models the motion of a magnetically focused axially
symmetric electron beam under the influence of a Brillouin flow (see [2] for details).

The existence of positive periodic solutions for this equation has been studied by several
authors who give some estimates on the parameter a > 0 to ensure such solutions (see for
instance [8, 9, 19, 21, 22, 24, 25, 26]). In some of the papers [21, 22] the positiveness of
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the Green’s function is fundamental to deduce the existence of solutions. Therefore the results
there obtained are automatically valid for the range of parameters showed in Example 5.3.

However, in some cases the related Green’s function changes sign at some of the values
obtained by these authors [19]. So the positivity of the Green’s function is a sufficient but not
a necessary condition to ensure the existence of positive periodic solutions for the Brillouin
equation.

Remark 5.2. In [4, Corollary 2.1] the forced Mathieu-Duffing type equation has been
considered

x′′ + (a+ b cos(t))x− λx3 = c(t). (5.4)

In particular, we prove that if condition (5.3) (with < instead of ≤) is satisfied and

min
t∈[0,2π]

∫2π

0

Ga(t, s) c(s) ds > 0

then there exists λ0 > 0 such that equation (5.4) has at least two positive 2π-periodic solutions
provided that 0 < λ < λ0.

Since the proof is obtained from the fact that the Green’s function Ga is strictly positive on
[0, 2π]× [0, 2π], we can extend the same result for all the admissible pairs (a, b) shown in the
interior of the wider set of Figure 2. Of course the same comment is valid for all the results in
[4] (or in other papers [14, 15, 21, 22, 23]) based on the positivity of Ga. We do not pursue
this line of generalization.

Acknowledgements. We are indebted to an anonymous referee for helping us to improve
the writing of a former version of the paper.
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