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Abstract

We study the existence of heteroclinics connecting the two equi-
libria £1 of the third order differential equation

W = f(u) + p(H)!
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where f is a continuous function such that f(u)(u?—1) > 0if u # +1
and p is a bounded non negative function. Uniqueness is also ad-
dressed.
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1 Introduction

The existence of kink solutions or heteroclinic orbits for the third order prob-
lem

u" = f(u), u(—o00)=u_, u(+0)=uy, (1)
arises for instance in the study of regularization of the Cauchy problem for
one-dimensional hyperbolic conservation laws

u+g(u), =0, u(0,2)=m1u(z). (2)

It is known that the single shock wave joining the two states u_ (on the left)
and u, (on the right)

u_ for x < A\t,
ult, z) = { uy for x> At )

is a weak solution of (2) if and only if its speed A satisfies the Rankine-
Hugoniot equation (see [1, Lemma 4.2])

gluy) = glu-) = A(ug —u_).

However weak solutions of (2) are in general not unique. A way to regularize
problem (2) is to search for weak solutions which are limits as ¢ — 07 of
solutions of

up +9(u)e = eA(u?),  uw(0,2) = u(z), (4)
where A is a differential operator of higher order in x (the viscosity). A choice
of A is admissible, in the sense of Gelfand [4], if shock wave solutions given
by (3) can be obtained as limits of solutions of (4). When A is a perfect
derivative the admissibility is equivalent to the existence of a heteroclinic
connection between u_ and u, for an autonomous equation. In particular,
the question of the admissibility of operator A(u) = —uz., leads to problem

(1) (see [8,9]).



In this work we are mainly motivated by the non autonomous version of
a related problem studied in [6, 12]

u" = f(u) +pt)u, u(—o0)=-1, u(+o0)=1, (5)

where f : R — R and p : R — R satisfy the following assumptions:
(f1)f : R — R is continuous and such that f(—1) = f(1) =0;
(p) p is continuous and IM > 0 such that, Vit € R, 0 < p(t) < M.

Clearly, under these assumptions, v = —1 and u = 1 are constant solu-
tions of the equation (5), so that we are looking for a heteroclinic connection
between these equilibria.

Our main example is f(u) = u? — 1 and p constant, which satisfies the
above conditions as well as

(s) f is even,
(s") pis even,
and f is increasing on [0, +oo[. This last assumption is too strong for most
of our aims. In our results we shall consider the following assumptions on f

and F(s) = /S f(r)dr.
(h1) There exiosts Ny > 1 such that

Vu € [0, No) \ {1}, f(u)(u—1)>0 and F(Ny) > 0;
(h2) There exist & < —1 and > 1 such that,

Vu € [o, B\ {=1,1}, f(u)(u®=1) >0,
F(8) = F(-1) and F(a) = F(1);

(h3) f satisfies (h2), is nondecreasing on [0, §] and nonincreasing on |, 0];
(h4) f satisfies (h2) together with

0 B
/F(s)ds>0 and / F(s)ds < 0.
«a 0
Remark 1.1 Note that (h2) implies (hl) with No = 3. On the other hand

(h1) is more general than (h2). Indeed, if f satisfies (f1), f(u)(u® —1) >0
for all uw # +1, and

0< —/Olf(u)du < /100 Flu)du < — /_llf(u)du,
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then f satisfies (h1) but not (h2).

Observe also that in case f is continuous on R, nondecreasing on R*,
nonincreasing on R~ and such that, for all u # +1, f(u)(u® — 1) > 0, we
have that F(+00) = +00 and F(—00) = —oo and hence (h2) is satisfied.

In comparison with second order (and fourth order) equations with monos-
table or bistable nonlinearities which have been extensively studied through
variational or topological arguments, see for instance [2], third order equa-
tions have been much less considered. Problem (5) however already received
attention in the literature. Solvability of (5) with f(u) = u*> — 1 and p =0
was given independently by Kopell and Howard, [5] and by Conley, [3] (see
also [11, pag. 456]). For general f there are several results due to Mock
8, 9] for p = 0 and Manukian and Schecter [6, Theorem 5.2] for p = § > 0.
Uniqueness of the connecting orbit for f(u) = u? — 1 was proved by McCord,
[7] and later by Toland [12]. Our results will complement and improve some
of the previous ones.

This paper is organized as follows: in Section 2 we prove that, under
assumptions (f1), (p) and f(u)(u®* —1) > 0 in a suitable interval except +1,
the existence of a solution of (5) is equivalent to the existence of a bounded
non constant solution of

u" = f(u) + p(t)u'. (6)

In Section 3, we prove the existence of such a solution in case f and p satisfy
(f1), (h1), (p), (s) and (s') and hence also the existence of a solution of
(5), while in Section 4, we obtain the existence of a solution of (5) under
assumptions (f1), (p) and (h2). We do not need a Lipschitz condition as
in the above quoted references since we use a different approach based on
degree theory combined with an approximation procedure.

In Section 5 we prove, among other things, that, in addition to (f1),
(h3), (h4), it is sufficient to assume f is locally Lipschitz on R and p is a non
negative constant in order to get uniqueness for the solution of (5).

2 Bounded solutions versus heteroclinics

We start with an analysis of the behaviour of bounded solutions at infinity.



Proposition 2.1 Assume the conditions (f1), (p) and f has only isolated

2€ros.

(i) If u is a solution of (6) in R, bounded together with pu’, then, for i €
{1,2,3}, u)(f£o0) = 0, u(+00) = a* and u(—o0) = a~ with f(a™) = 0.

(ii) If in addition u is non constant andVz € [—||ullso, |ull] \{£1}, f(2)(z*—
1) > 0, then u(—o0) = —1 and u(+o00) = 1.

Proof — First observe that, as u and pu’ are bounded, by the equation satis-
fied by u, we have u” bounded on R and hence, by interpolation, u” and v’
are bounded too.

Claim 1: u”"(+00) = 0. Multiplying the equation v” = f(u) + p(t)u’ by v’
and integrating on [0, {] we obtain

t t
o (t)u" (t) — ' (0)u"(0) — F(u(t)) + F(u(0)) = / u"(s)ds —I—/ p(s)u?(s)ds.
0 0
(1)
By hypothesis, the left hand side is bounded in R and therefore

| s [T < o )

Since p is nonnegative, we infer from the square integrability of v” and the
boundedness of u"” that u”(+o00) = 0.

Claim 2: u'(400) = 0. First it is clear that v’ cannot accumulate to a positive
or negative value. If v’ has more than a cluster value, then |v'(z) — v/ (y)| >
e > 0 implies |x — y| — oo because u”(+00) = 0. Then it is easy to reach a
contradiction using the boundedness of u.

Claim 3: u"'(4+00) = 0 and u(4+00) = a® with f(a™) = 0. Equation (1)
together with (2), Claim 1 and 2 imply that F(u(+00)) exists. As F' is not
constant in any interval, it follows that u(4+o00) = a™ exists. Going back to
the equation (6) we conclude that u”(+00) = f(a™). Since u” is bounded
we obtain f(a™) = 0.

Claim 4: Fori € {1,2,3}, u)(—o0) = 0 and u(—o0) = a~ with f(a~) = 0.
The proof is the same as in the previous Claims.

Claim 5: In case u is not constant and, for all x € [—||u||oo, [|u]loo] \ {1},
f(x)(x* — 1) > 0, then u(—o0) = —1 and u(4+o00) = 1. Observe that, by
assumption, {a™,a”} C {—1,1}. Moreover, along the solutions of (6), we
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have (F(u(t)) —u"(t)u'(t)) = —p(t)u?(t) —u"?(t) from which we deduce that
F(u(t)) —u”(t)u/(t) is nonincreasing and in fact decreasing in case u”(t) # 0.
Hence, as u is not constant, we have

Flu(+o0)) = lim (Flu(t)) - u"(t)u/(1)
<t (F(u(t) — (0 (1)) = F(u(~o0))

The result follows from {u(4+00),u(—00)} C {—1,1} and F(1) < F(—-1). m

Remark 2.1 Observe that Proposition 2.1 implies that, under the assump-
tions (f1), (p) and if, for all x # +1, f(x)(z* — 1) > 0, the problem

u" = f(u) +pt)u, u(—o0)=1, wu(+o00)= -1,
has no Ct-bounded solution.
Define the space
CB*(R) = {u € C*(R) | u,v/,u”,u" € L™(R)}.

Proposition 2.2 Under the assumptions (f1), (p) and (h2), any solution
u € CB*(R) of (5) takes values in |, 3].

Proof — Recall first that F(u(t)) — u”(t)u/(t) is nonincreasing along the so-
lutions of (5). Using Proposition 2.1, we have for all ¢t € R,

P(1) = lim (Fu(t) - "(t)'()
< F(u(t) — ' (0)u(1)
< tim (F(u(t) — () (1) = F(~1).

Hence, for every critical value ¢ of u we have
F(1) < Fu(t)) < F(=1).

The result then follows from the fact that u(+o00) =1 and u(—o00) = —1. =



Remark 2.2 Suppose that in addition to (f1), there exists ¢ > 0 such that
fu)(u—1) > c(u—1)2 for all uw > 0 (this is in particular true for f(u) =
u?—1). Then it is easy to see that any bounded solution of "' = f(u) belongs
to an affine translate of the space H*(R) (or we can write uF 1 € H?(R*)).

In fact multiplying the equation by uw— 1 and integrating in [0, T] we see that
T

the mtegml/ f(u(s))(u(s)—1)ds is bounded independently of T > 0. This
0

implies that / f(u(s))(u(s) — 1) ds exists and by the above condition
0

/Ooo(u(s) —1)2ds < oo.

As / u"(s) ds < oo the conclusion follows from standard interpolation.
0

3 A boundary value problem in the half-line:
bounded solutions yielding odd heteroclin-
ics under symmetry

To solve (5) in case f and p are even it is enough to find a solution of the
boundary value problem

u" = f(u) +p)d, w(0)=u"(0)=0, wu(+o0)=1. (1)

Indeed, if u is a solution of (1) then the odd extension of u solves (5).

To solve (1), using Proposition 2.1, we consider the approximated problem
in a finite interval [0,n], n € N,

u" = f(u) +pt)u, u(0)=u"(0)=0, u'(n)=0. (2)

Lemma 3.1 Suppose that f : R — R and p : R — R satisfy conditions
(f1), (p), (hl). Then for each n € N, there exists a solution u, of (2) with
0 < wu, < Ny on [0,n], where Ny is given by (hl).

Proof — We divide the proof into several steps.



Step 1.- The modified problem. We define the function f*: R — R as

f(Ng), if u > No,
fru)y=4q flw), ifuel0,No,
£(0), if u <0,
and consider the modified problem
u" = f*(u) + pt)d, w(0) =4"(0)=0, u'(n)=0. (3)

Step 2.- Reduction to a fixed point problem.
Claim. - For each h € C([0,n]), the linear problem

u" —pt)u = h(t), w(0)=4"(0)=0, u'(n)=0, (4)

has a unique solution. As is well known, it is sufficient to prove that the
problem

v —pt)u' =0, w0)=u"(0)=0, u'(n)=0, (5)
has only the trivial solution. In fact, if (5) has a nontrivial solution, let
v =u'. Then v satisfies

V' —p(t)v =0, J'(0)=0, wv(n)=0.
Multiplying the equation by v and integrating, we have

/0 "2 (8) + p(t)2(1)) dt = 0.

This implies that ' = 0 and as v(n) = 0 we obtain v = 0, i.e. v’ = 0. Since
u(0) = 0, it follows that u = 0.

By the above claim, we can define the solution operator K : C([0,n]) —
C([0,n]) corresponding to (4). Then let S : C([0,n]) — C([0,n]) be given by

Su = K(f*(u)).

It is clear that S is a completely continuous operator and that u is a solution
of (3) if and only if u is a fixed point of S. In order to obtain a fixed point
we consider the homotopy

u=KA\f*(u)), Xel0,1], (6)
which is equivalent to the problem
u" =M (u) +pt)u, uw(0)=u"(0)=0, u'(n)=0. (7)
Step 3.- A priori estimates.



Claim 1. For all A € [0,1], any solution of (7) is nonnegative on [0,n]. Let
u be a solution of (7).
Case 1. A =10. As in Step 2 above, we know that the solution of

u" = p(t)u, uw(0) =u"(0) =0, u'(n)=0.

1su=0.

Case 2. X €]0,1]. Assume by contradiction that u takes negative values.
Then the boundary conditions imply that for some ¢; < t, we have u(t;) =
0, and u(t) < 0 for all ¢t €]t1, 1], w'(tz) = 0 and Vt €lty,tof, /() < 0.
Otherwise t; would be an accumulation point of critical points of u, implying
0 = u"”(t1) — p(t1)u/(t1) = Af(0) < 0, a contradiction. Now we have, for
some t € |t1,ta],

(t2 — t1)?

5 .
Since Af*(u(t)) + p(t)u'(t) < Af(0) < 0 and v/(t;) < 0 then w”(t;) > 0 and
hence ¢; > 0. Multiplying the equation (7) by u' and integrating by parts
between 0 and t; we obtain the contradiction

0=u'(ty) =u'(t1) +u"(t1)(ta — t1) + [N (u(t)) + p(t)u'(t)]

t1
0 > Wt (t)— / W (5)ds
0

t1 t1 1
= / A (u(s))u'(s)ds —I—/ p(s)u?(s)ds = / p(s)u?(s)ds > 0.
0 0 0
Claim 2. For any n € N, X € [0,1] and any solution u of (7) we have,

for all t € [0,n], |u(t)] < Np.

By Claim 1 we have that u(t) > 0 for all t € [0,n]. Let a solution u of
(7) attain a positive maximum at some point ¢, €]0,n]. This implies in
particular that A # 0. Now, multiplying (7) by «’ and integrating in [0, £,
we have

0> — /0 W (s)ds — /O " p(s)u(s)ds = AF*(u(to)).

u

with F*(u) = / f*(s)ds. Hence by assumption (h1l) and construction, we
0
obtain that 0 < u(t) < Nj.



Step 4.- Conclusion.

By standard results of Leray-Schauder degree theory the equation (6) has
a solution u for A = 1 which is a solution of (3). Moreover by Claims 1 and
2 we have that 0 < u < Ny and hence it is also a solution of (2). ]

Remark 3.1 We do not use the all strength of (h1). We just used the fact
that f(0) < 0 and there exists Nog > 0 such that F(Ny) > 0. In that case,
without loss of generality, we can assume f(Ng) > 0.

Lemma 3.2 Under the assumptions of Lemma 3.1, there exists a number
K > 0 with the property that, for alln € N,

lltn |lcso,n)) < K.

Proof — We first show that |||/ 12(0,) is bounded independently of n. Indeed,
multiplying the equation in (2) by w,, and integrating by parts between 0 and
n, using the boundary conditions we obtain

/ u’?(s)ds = —/ f(un(s))ul (s)ds — / p(s)u*(s)ds < — min F,

0 0 0 [0,No]

Let us extend u, to [0, +oc[ with the constant value w,(n) in [n,+oo[, and
define v, as the odd extension of u, to R. Then v, € C'(R) and by the
Gagliardo-Nirenberg’s interpolation inequality [10], there is a constant C
such that

2/3 1/3
o4 lleqry < CllvalZtg lvnlleqm,-
Since
[vplle@ = llunllcqonys  vnllz@y = 2llunlizzoms  valle® = llunlleqon),
we infer

sup ||y, |l e(o.n) < 00
and the differential equation yields

sup ||uy, [leqo,n)) < 0.
The conclusion now follows from standard interpolation. |
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Proposition 3.3 Assume hypotheses (f1), (p), (hl). Then the boundary
value problem (1) has a solution u € C3([0,4o00[) which is nonnegative on
0, +o0] and such that v/, u” and u" are bounded in R*.

Proof — By Lemmas 3.1 and 3.2 we have that, for each n € N, the equation
u” = f(u) + p(t)u’ has a solution w,, defined in [0,n], u,(0) = u”(0) = 0,
0 <wu, <Ny and u;, u and u,’ are bounded by a constant M > 0 which is
independent of n € N. Then using Ascoli’s theorem and the Cantor diagonal
process we can select a sequence of values of ny — oo and u € C3([0, +o0[)
so that for any a > 0 we have that u,, converges to u in C*([0,a]) and u
solves v = f(u) + p(t)u" and satisfies the boundary conditions at ¢ = 0. As
u(0) = 0, u is not a constant solution and by the arguments in the proof of
Proposition 2.1, u satisfies the boundary condition at infinity as well. [ ]

Extending any solution of (1) by oddness, the last proposition implies

Theorem 3.4 Assume that hypotheses (f1), (p), (hl), (s) and (s') hold.
Then (5) has a odd solution u € CB*(R) which nonnegative in |0, +oc[ and
satisfies

U (£00) = 1 (£o0) = v (£o0) = 0.

Remark 3.2 The function F(u)—u'u" plays the role of a Liapunov function
for the equation v = f(u) + p(t)u'. In fact in the case where p is constant
and we have uniqueness of the Cauchy problem, for instance when f is locally
Lipschitz-continuous, we can obtain a proof of the Theorem 3.4 using that the
Liapunov function is strictly decreasing along the nonconstant solutions and
the La Salle invariance principle [13].

Moreover the existence of the Liapunov function may be used to see that
the problem

u" = f(u), u(—o0) = -1, u(4o00) =1,

has no solution if f is a continuous odd function with f(1) = 0.

4 The non-symmetric problem

If we drop the assumptions of symmetry (s) and (s') the existence of hetero-
clinics of (5) becomes considerably more complicated.
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Theorem 4.1 Assume that hypotheses (f1), (p) and (h2) hold. Then (5)
has a solution u € CB*(R) which satisfies

U (£00) = 1 (£o0) = v (£o0) = 0.

Proof — As in the symmetric case, to solve (5) we start with an approximated
problem in a finite interval [—n,n], n € N,

u" = f(u) +p)d, u'(-n)=0, w0)=0, u(n)=0. (1)

and we prove the equivalent of Lemma 3.1 for this problem, i.e., for alln € N,
there exists a solution u,, of (1) with, for all ¢t € [-n,n], a < u(t) <  where
a and f are given by (h2).

We divide the proof into several steps.

Step 1.- The modified problem. We define the functions f,, f_ : [-n,n]xR —
R by

f(8), if u>p, 0, if u>1,
folu) =< f(u), if ue[-1,0], fo(u) =< f(u), if u € |a, 1],
0, if u < —1, fla), if u < a.

and we set £ (10
* _ u), lt_ )
! (t’“>{ ff(u), if £ < 0.

Consider then the modified problem
u" =t u) +pt)d, W'(—n)=0, u(0)=0, '(n)=0. (2)

Step 2.- Reduction to a fixed point problem.
Claim. - For each h € C([—n,n]), the linear problem

has a unique solution. The proof follows as in Lemma 3.1.

By the above claim, we can define the solution operator K : C([—n,n]) —
C([—n,n]) corresponding to (3). Let

Q={uel(-n,n]) |
(—n) < 1 and u(n) > —1 and,Vt € [-n,n|, a < u(t) < }.

12



Then let S : Q — C([—n,n]) be given by
Su = K(/*(t,w).

It is clear that S is a completely continuous operator and that u is a solution
of (2) if and only if u is a fixed point of S. In order to obtain a fixed point
we consider the homotopy

w=KO\f (), Aelo 1], (4)
which is equivalent to the problem
u" =N (tu) +pt)u, W (—n)=0, u(0)=0, u'(n)=0. (5

Step 3.- A priori estimates. Let us prove that, for all A € [0, 1], there is no
solution of (5) on 0f2.

Claim 1 - For A = 0, the solution u of (5) is in §2. In fact it is easy to observe
that v = 0 and hence u € €.

Claim 2 - For A €]0,1] and u a solution of (5) with u(—n) < 1 and u(n) >
—1, we have, ¥t € [0,n], —1 < u(t) < S and, ¥Vt € [-n,0], o < u(t) < 1.

In case u is constant, the result is trivial, so we can assume that u is not
u

constant. Let F (u) = / f+(s)ds and F_(u) :/ f-(s) ds. Observe that,
0 0
if u is a solution of (5), then f*(-,u(+)) is continuous in [—n,n] and therefore

u € C3([-n,n]). Then

%[AFM(t))—u’(t)u”(t}] = —u"(t) —p(t)u*(t), for t € [0,n],
%[AF_(u(t))—u’(t)u”(t)] = —u"(t) — p()*(t), forte[—n,0].

Since the solution is not constant and F, (u(0)) = 0 = F_(u(0)), these
inequalities yield
Fi(u(n)) < F-(u(=n)). (6)
Now the behaviour of Fy and F_ immediately implies u(n) €] — 1, 5] and
u(—n) €la,1[. Hence for all ¢t € [0,n], —1 < u(t) < B: otherwise suppose
ming<<, u(t) = u(ty) < —1. Then ty €]0,n], v/(ty) = 0 and by the same ar-
gument F (u(ty)) < F_(u(—n)), a contradiction. A similar argument proves
that maxo<;<, u(t) > f cannot hold. We proceed in the same way to show
that for all t € [-n,0], a < u(t) < 1.

13



Claim 3 - For A €]0,1], there is no solution of (5) on 0. Otherwise, by
Claim 2, we have a solution u with either u(—n) = 1 or u(n) = —1. If we have
a solution u with u(—n) = 1, then, by (6) again, we have F (u(n)) < F_(1)
which contradicts the fact that min F, = F_(1). In the same way, if we have
a solution u with u(n) = —1, we find a similar contradiction.

Step 4.- Conclusion of the proof.

By standard results of Leray-Schauder degree theory, the equation (4)
has a solution u € Q for A = 1 which is a solution of (2) and hence also a
solution of (1) by Claim 2.

We have seen that, for all n,

[tnlle(—nn)y < max{|al, B}

As in the proof of Lemma 3.2, we deduce

" 2
[y < W+ [ sttt 7
<

= F(u(—n)) — F(u(n)) < 2maxp g |F(u)].

Define v,, as the extension of u, to R such that, Vi < —n, v,(t) = u,(—n)
and, Vt > n, v,(t) = u,(n). Then v, € C'(R) and, as in Lemma 3.2,
the Gagliardo-Nirenberg inequality yields the boundedness of ||v/,|lcw) =
l|lur,|le(—n.n))- The proof then concludes as in Section 3. u

Remark 4.1 Theorem 4.1 extends to the non autonomous case [9, Theorem
0/, [8] and [6, Theorem 5.2]. Even for the autonomous case our theorem
improves the previous ones since we do not impose to the function f to be C*
or Lipschitz continuous.

5 Uniqueness of the kink solution

In the following result we prove that, under condition (h4), the solutions of
(5) have a unique zero.

Proposition 5.1 Suppose that f and p satisfy conditions (f1), (p) and (h4).
Then every solution u € CB*(R) of (5) has a unique zero ty and ¥Vt € R\ {ty},
u(t)(t —tg) > 0.

14



Proof — Observe that, by Proposition 2.1, every solution v € CB*(R) of
(5) satisfies u/(+00) = u”(4+00) = 0 and, by Proposition 2.2, for all t € R,

0
u(t) € [, B]. Moreover, by assumptions, for all x € [«, 0], / F(r)ydr >0

and, for all x €]0, 5], / F(r)dr < 0. Let us prove that, if u is a solution of

0
(5) such that u(tg) = 0, it satisfies u'(tp) > 0 and hence a solution of (5) has
a single zero. Assume by contradiction that u'(ty) < 0.

Case 1. u"(tg) < 0. As u(ty) = 0, u/(to) < 0, v’ (tg) < 0 and u"(ty) =
F(0) + p(to)u'(ty) < 0, we have that /(t) is negative for values of ¢ close to
to. Define t; = sup{t > ¢y | Vs €]to, t[,u'(s) < 0}. As u(+o00) = 1, we have
t1 < +00, u’(tl) =0 and Ul(t) < 0on ]to,tl[.

As F(u(t)) — «/(t)u”(t) is nonincreasing along the solutions of (5), for
t 2 th
F(u(t)) — o' (t)u"(t) < —u/(to)u" (to) < 0.

Hence, we have

0< / P () () — () (b)) dt = — / Frydr+ ).

to (t1) 3
It follows that

0 3
4
/ Py < 100 < g,
a(t) 3
0
which contradicts u(t;) € [, 0] and / F(r)dr > 0.
u(t)
Case 2. u”(ty) > 0. This case is similar to the previous one considering u(t)

for t < to.

Conclusion — We deduce from the two previous case that u/(ty) > 0 and
hence u has a unique zero. [ ]

In the following theorem we prove the uniqueness of solution for (5) under
slightly stronger assumptions than in previous sections.

Theorem 5.2 Suppose that f and p satisfy conditions (f1), (p), (h3) and
(hd). Then, for every ty € R, there exist A > 0 and B € R such that, for
every solution u € CB*(R) of (5) such that u(ty) = 0, we have u'(ty) = A
and u”(tg) = B. Moreover the solution of (5) has a single zero.
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If moreover f is locally Lipschitz on |«, (], then, for every ty € R, there
exists at most one solution u € CB*(R) of (5) such that u(ty) = 0. Moreover
00, to|

w s positive in |to, 00|, negative on | — oo, to[ and

U (£00) = u'(£o0) = u"'(£o0) = 0.

Proof — Let ty € R.

Step 1 — There exists A € R such that every solution u of (5) such that
u(to) = 0 satisfies u/'(ty) = A. Otherwise, let u; and us be two solutions with
uy(to) = ua(ty) = 0 and u)(ty) > uh(to). Recall that, by Proposition 5.1, for
every t # to, for i = 1,2 we have u;(t)(t — to) > 0.

Let w = u; — uy and observe that

w” = f(u) = f(uz) + p(t)w'
w(ty) =0, w(ty) >0, w(—o0)=0, w(+oo)=0.

It follows that for ¢ close to to, w'(t) > 0 and since w(ty) = w(—o0) =
w(400) = 0, there exists t; < ty < ty such that w'(t) > 0 on ]t1, 5] and
w'(t1) = w'(ty) = 0. Next as f is nondecreasing on R* and nonincreasing on
R~ and, for every t # to, for i = 1,2 we have w;(t)(t — to) > 0, we have that
z = w' satisfies

2" = fur) = f(u2) + p(t)z > 0, on Jty, o]
2(tr) = 2(t2) =0, z(to) >0,

which contradicts the maximum principle.

Step 2 — There exists B € R such that every solution u of (5) such that
u(ty) = 0 satisfies u”(ty) = B. Otherwise, let u; and us be two solutions with
uy(to) = uz(te) = 0 and uf(tg) > ul(ty). By Step 1, we have u)(tog) = u)(to).
As in Step 1, we observe that there exists t5 > tg such that w = u; — us
satisfies

f(uz) + p(t)w', on Jto, ta]
w”(tg) >0, w'(t2) =0,

and hence z = w’ satisfies

2" = f(ur) — f(ug) +p(t)z > 0, on |ty to]
z(to) = 2(t2) =0, 2'(to) > 0,

which contradicts the Hopf maximum principle. [ |

16



Combining Theorems 4.1 and 5.2 we obtain the following result in the
particular case where p is a constant.

Theorem 5.3 Suppose that f : R — R is locally Lipschitz on [a, 8] and
satisfies (f1), (h3) and (h4). In addition assume p is a nonnegative constant.
Then (5) has a unique (up to translations) solution u € CB*(R). Moreover
u has a unique simple zero and

U (£00) = 1 (£o0) = v (£o0) = 0.
In the symmetric case, we obtain the following result.

Theorem 5.4 Suppose that f : R — R is locally Lipschitz on [a, 8] and
satisfies conditions (f1), (p), (h3) and (s). Then there exists at most one
solution u € CBB*(R) of (5) such that u(0) = 0.

If (") is satisfied too, then the problem (5) has a unique solution u such
that u(0) = 0. Moreover, u is odd, positive on [0,4+o0[ and satisfies

U (£00) = 1 (£o0) = v (£o0) = 0.

Proof — We just have to prove that (h4) is satisfied. In that case, we conclude
by Theorems 3.4 and 5.2. Let u; be the positive zero of F' and assume

g
/ F(s)ds > 0. As F is convex on [0, 3] and —F (1) = F(8) > 0, we have
0

1< # < uy < . Hence, we obtain the contradiction

/ﬂF(r)drz /OUIF(r)dr /1u1F(r)dr

B 0

which proves that / F(s)ds > 0. The proof that / F(s)ds < 0 is similar.
0 «a

u

. B
> [Py P2 / F(r)dr.

>
4

Remark 5.1 Theorem 5.4 extends the uniqueness result in [12, Theorem
3.8] to the nonautonomous case.

As an immediate consequence of the previous results we have the following
one for the model problem.
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Corollary 5.5 Consider the problem
M =u? =1, u(—o00)=—1, wu(+oo)=1. (1)

Then we have:
(i) For X\ > 0 there exists a unique solution u € C3(R) of (1) (up to transla-
tions). Moreover u has a unique simple zero, is odd around it, and

u'(£00) = u”(+o0) = u"(£o0) = 0.

(ii)For A < 0 problem (1) has no solution.
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