Heteroclinics for some non autonomous third order differential equations

Denis Bonheure ${ }^{\dagger}$, José Ángel Cid ${ }^{\ddagger 1}$, Colette De Coster ${ }^{\sharp}$ and Luís Sanchez ${ }^{\sharp \sharp 2}$
† Département de Mathématique, Université libre de Bruxelles, CP 214 Boulevard du Triomphe, 1050 Brussels, Belgium. dbonheur@ulb.ac.be
\ddagger Departamento de Matemáticas, Universidade de Vigo, Pabellón 3, Campus de Ourense, 32004, Ourense, Spain. angelcid@uvigo.es
\# Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956,
Institut des Sciences et Techniques de Valenciennes, F-59313 Valenciennes Cedex 9, France.
Colette.DeCoster@univ-valenciennes.fr
姆 CMAF - Faculdade de Ciências da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal. sanchez@ptmat.fc.ul.pt

[^0]where f is a continuous function such that $f(u)\left(u^{2}-1\right)>0$ if $u \neq \pm 1$ and p is a bounded non negative function. Uniqueness is also addressed.

Key words: Third order; heteroclinic; boundary value problems in unbounded intervals.

2000 MSC: 34B40, 34C37.

1 Introduction

The existence of kink solutions or heteroclinic orbits for the third order problem

$$
\begin{equation*}
u^{\prime \prime \prime}=f(u), \quad u(-\infty)=u_{-}, \quad u(+\infty)=u_{+}, \tag{1}
\end{equation*}
$$

arises for instance in the study of regularization of the Cauchy problem for one-dimensional hyperbolic conservation laws

$$
\begin{equation*}
u_{t}+g(u)_{x}=0, \quad u(0, x)=\bar{u}(x) \tag{2}
\end{equation*}
$$

It is known that the single shock wave joining the two states u_{-}(on the left) and u_{+}(on the right)

$$
u(t, x):= \begin{cases}u_{-} & \text {for } x<\lambda t \tag{3}\\ u_{+} & \text {for } x>\lambda t\end{cases}
$$

is a weak solution of (2) if and only if its speed λ satisfies the RankineHugoniot equation (see [1, Lemma 4.2])

$$
g\left(u_{+}\right)-g\left(u_{-}\right)=\lambda\left(u_{+}-u_{-}\right) .
$$

However weak solutions of (2) are in general not unique. A way to regularize problem (2) is to search for weak solutions which are limits as $\varepsilon \rightarrow 0^{+}$of solutions of

$$
\begin{equation*}
u_{t}^{\varepsilon}+g\left(u^{\varepsilon}\right)_{x}=\varepsilon A\left(u^{\varepsilon}\right), \quad u^{\varepsilon}(0, x)=\bar{u}(x) \tag{4}
\end{equation*}
$$

where A is a differential operator of higher order in x (the viscosity). A choice of A is admissible, in the sense of Gelfand [4], if shock wave solutions given by (3) can be obtained as limits of solutions of (4). When A is a perfect derivative the admissibility is equivalent to the existence of a heteroclinic connection between u_{-}and u_{+}for an autonomous equation. In particular, the question of the admissibility of operator $A(u)=-u_{x x x x}$ leads to problem (1) (see $[8,9])$.

In this work we are mainly motivated by the non autonomous version of a related problem studied in $[6,12]$

$$
\begin{equation*}
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1 \tag{5}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ and $p: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the following assumptions:
$(f 1) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and such that $f(-1)=f(1)=0$;
(p) p is continuous and $\exists M>0$ such that, $\forall t \in \mathbb{R}, 0 \leq p(t) \leq M$.

Clearly, under these assumptions, $u=-1$ and $u=1$ are constant solutions of the equation (5), so that we are looking for a heteroclinic connection between these equilibria.

Our main example is $f(u)=u^{2}-1$ and p constant, which satisfies the above conditions as well as
(s) f is even,
$\left(s^{\prime}\right) p$ is even,
and f is increasing on $[0,+\infty[$. This last assumption is too strong for most of our aims. In our results we shall consider the following assumptions on f and $F(s)=\int_{0}^{s} f(r) d r$.
(h1) There exists $N_{0}>1$ such that

$$
\forall u \in\left[0, N_{0}\right] \backslash\{1\}, f(u)(u-1)>0 \quad \text { and } \quad F\left(N_{0}\right) \geq 0
$$

(h2) There exist $\alpha<-1$ and $\beta>1$ such that,

$$
\begin{gathered}
\forall u \in[\alpha, \beta] \backslash\{-1,1\}, \quad f(u)\left(u^{2}-1\right)>0 \\
F(\beta)=F(-1) \quad \text { and } \quad F(\alpha)=F(1)
\end{gathered}
$$

(h3) f satisfies $(h 2)$, is nondecreasing on $[0, \beta]$ and nonincreasing on $[\alpha, 0]$;
(h4) f satisfies $(h 2)$ together with

$$
\int_{\alpha}^{0} F(s) d s>0 \quad \text { and } \quad \int_{0}^{\beta} F(s) d s<0 .
$$

Remark 1.1 Note that ($h 2$) implies ($h 1$) with $N_{0}=\beta$. On the other hand $(h 1)$ is more general than (h2). Indeed, if f satisfies $(f 1), f(u)\left(u^{2}-1\right)>0$ for all $u \neq \pm 1$, and

$$
0<-\int_{0}^{1} f(u) d u<\int_{1}^{\infty} f(u) d u \leq-\int_{-1}^{1} f(u) d u
$$

then f satisfies ($h 1$) but not ($h 2$).
Observe also that in case f is continuous on \mathbb{R}, nondecreasing on \mathbb{R}^{+}, nonincreasing on \mathbb{R}^{-}and such that, for all $u \neq \pm 1, f(u)\left(u^{2}-1\right)>0$, we have that $F(+\infty)=+\infty$ and $F(-\infty)=-\infty$ and hence ($h 2$) is satisfied.

In comparison with second order (and fourth order) equations with monostable or bistable nonlinearities which have been extensively studied through variational or topological arguments, see for instance [2], third order equations have been much less considered. Problem (5) however already received attention in the literature. Solvability of (5) with $f(u)=u^{2}-1$ and $p \equiv 0$ was given independently by Kopell and Howard, [5] and by Conley, [3] (see also [11, pag. 456]). For general f there are several results due to Mock $[8,9]$ for $p \equiv 0$ and Manukian and Schecter [6, Theorem 5.2] for $p \equiv \beta>0$. Uniqueness of the connecting orbit for $f(u)=u^{2}-1$ was proved by McCord, [7] and later by Toland [12]. Our results will complement and improve some of the previous ones.

This paper is organized as follows: in Section 2 we prove that, under assumptions $(f 1),(p)$ and $f(u)\left(u^{2}-1\right)>0$ in a suitable interval except ± 1, the existence of a solution of (5) is equivalent to the existence of a bounded non constant solution of

$$
\begin{equation*}
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime} . \tag{6}
\end{equation*}
$$

In Section 3, we prove the existence of such a solution in case f and p satisfy $(f 1),(h 1),(p),(s)$ and $\left(s^{\prime}\right)$ and hence also the existence of a solution of (5), while in Section 4, we obtain the existence of a solution of (5) under assumptions $(f 1),(p)$ and $(h 2)$. We do not need a Lipschitz condition as in the above quoted references since we use a different approach based on degree theory combined with an approximation procedure.

In Section 5 we prove, among other things, that, in addition to ($f 1$), ($h 3$), ($h 4$), it is sufficient to assume f is locally Lipschitz on \mathbb{R} and p is a non negative constant in order to get uniqueness for the solution of (5).

2 Bounded solutions versus heteroclinics

We start with an analysis of the behaviour of bounded solutions at infinity.

Proposition 2.1 Assume the conditions (f1), (p) and f has only isolated zeros.
(i) If u is a solution of (6) in \mathbb{R}, bounded together with $p u^{\prime}$, then, for $i \in$ $\{1,2,3\}, u^{(i)}(\pm \infty)=0, u(+\infty)=a^{+}$and $u(-\infty)=a^{-}$with $f\left(a^{ \pm}\right)=0$.
(ii) If in addition u is non constant and $\forall x \in\left[-\|u\|_{\infty},\|u\|_{\infty}\right] \backslash\{ \pm 1\}, f(x)\left(x^{2}-\right.$ 1) >0, then $u(-\infty)=-1$ and $u(+\infty)=1$.

Proof - First observe that, as u and $p u^{\prime}$ are bounded, by the equation satisfied by u, we have $u^{\prime \prime \prime}$ bounded on \mathbb{R} and hence, by interpolation, $u^{\prime \prime}$ and u^{\prime} are bounded too.
Claim 1: $u^{\prime \prime}(+\infty)=0$. Multiplying the equation $u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}$ by u^{\prime} and integrating on $[0, t]$ we obtain
$u^{\prime}(t) u^{\prime \prime}(t)-u^{\prime}(0) u^{\prime \prime}(0)-F(u(t))+F(u(0))=\int_{0}^{t} u^{\prime \prime 2}(s) d s+\int_{0}^{t} p(s) u^{\prime 2}(s) d s$.
By hypothesis, the left hand side is bounded in \mathbb{R} and therefore

$$
\begin{equation*}
\int_{0}^{\infty} p(s) u^{\prime 2}(s) d s+\int_{0}^{\infty} u^{\prime \prime 2}(s) d s<\infty \tag{2}
\end{equation*}
$$

Since p is nonnegative, we infer from the square integrability of $u^{\prime \prime}$ and the boundedness of $u^{\prime \prime \prime}$ that $u^{\prime \prime}(+\infty)=0$.
Claim 2: $u^{\prime}(+\infty)=0$. First it is clear that u^{\prime} cannot accumulate to a positive or negative value. If u^{\prime} has more than a cluster value, then $\left|u^{\prime}(x)-u^{\prime}(y)\right| \geq$ $\varepsilon>0$ implies $|x-y| \rightarrow \infty$ because $u^{\prime \prime}(+\infty)=0$. Then it is easy to reach a contradiction using the boundedness of u.
Claim 3: $u^{\prime \prime \prime}(+\infty)=0$ and $u(+\infty)=a^{+}$with $f\left(a^{+}\right)=0$. Equation (1) together with (2), Claim 1 and 2 imply that $F(u(+\infty))$ exists. As F is not constant in any interval, it follows that $u(+\infty)=a^{+}$exists. Going back to the equation (6) we conclude that $u^{\prime \prime \prime}(+\infty)=f\left(a^{+}\right)$. Since $u^{\prime \prime}$ is bounded we obtain $f\left(a^{+}\right)=0$.
Claim 4: For $i \in\{1,2,3\}, u^{(i)}(-\infty)=0$ and $u(-\infty)=a^{-}$with $f\left(a^{-}\right)=0$. The proof is the same as in the previous Claims.
Claim 5: In case u is not constant and, for all $x \in\left[-\|u\|_{\infty},\|u\|_{\infty}\right] \backslash\{ \pm 1\}$, $f(x)\left(x^{2}-1\right)>0$, then $u(-\infty)=-1$ and $u(+\infty)=1$. Observe that, by assumption, $\left\{a^{+}, a^{-}\right\} \subset\{-1,1\}$. Moreover, along the solutions of (6), we
have $\left(F(u(t))-u^{\prime \prime}(t) u^{\prime}(t)\right)^{\prime}=-p(t) u^{\prime 2}(t)-u^{\prime \prime 2}(t)$ from which we deduce that $F(u(t))-u^{\prime \prime}(t) u^{\prime}(t)$ is nonincreasing and in fact decreasing in case $u^{\prime \prime}(t) \neq 0$. Hence, as u is not constant, we have

$$
\begin{aligned}
F(u(+\infty)) & =\lim _{t \rightarrow+\infty}\left(F(u(t))-u^{\prime \prime}(t) u^{\prime}(t)\right) \\
& <\lim _{t \rightarrow-\infty}\left(F(u(t))-u^{\prime \prime}(t) u^{\prime}(t)\right)=F(u(-\infty)) .
\end{aligned}
$$

The result follows from $\{u(+\infty), u(-\infty)\} \subset\{-1,1\}$ and $F(1)<F(-1)$.

Remark 2.1 Observe that Proposition 2.1 implies that, under the assumptions $(f 1),(p)$ and if, for all $x \neq \pm 1, f(x)\left(x^{2}-1\right)>0$, the problem

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(-\infty)=1, \quad u(+\infty)=-1
$$

has no \mathcal{C}^{1}-bounded solution.
Define the space

$$
\mathcal{C B}^{3}(\mathbb{R})=\left\{u \in \mathcal{C}^{3}(\mathbb{R}) \mid u, u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime} \in L^{\infty}(\mathbb{R})\right\}
$$

Proposition 2.2 Under the assumptions $(f 1)$, (p) and ($h 2$), any solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ of (5) takes values in $[\alpha, \beta]$.

Proof - Recall first that $F(u(t))-u^{\prime \prime}(t) u^{\prime}(t)$ is nonincreasing along the solutions of (5). Using Proposition 2.1, we have for all $t \in \mathbb{R}$,

$$
\begin{aligned}
F(1) & =\lim _{t \rightarrow+\infty}\left(F(u(t))-u^{\prime \prime}(t) u^{\prime}(t)\right) \\
& \leq F(u(t))-u^{\prime \prime}(t) u^{\prime}(t) \\
& \leq \lim _{t \rightarrow-\infty}\left(F(u(t))-u^{\prime \prime}(t) u^{\prime}(t)\right)=F(-1)
\end{aligned}
$$

Hence, for every critical value \bar{t} of u we have

$$
F(1) \leq F(u(\bar{t})) \leq F(-1)
$$

The result then follows from the fact that $u(+\infty)=1$ and $u(-\infty)=-1$.

Remark 2.2 Suppose that in addition to ($f 1$), there exists $c>0$ such that $f(u)(u-1) \geq c(u-1)^{2}$ for all $u>0$ (this is in particular true for $f(u)=$ $\left.u^{2}-1\right)$. Then it is easy to see that any bounded solution of $u^{\prime \prime \prime}=f(u)$ belongs to an affine translate of the space $H^{2}(\mathbb{R})$ (or we can write $u \neq 1 \in H^{2}\left(\mathbb{R}^{ \pm}\right)$). In fact multiplying the equation by $u-1$ and integrating in $[0, T]$ we see that the integral $\int_{0}^{T} f(u(s))(u(s)-1) d s$ is bounded independently of $T>0$. This implies that $\int_{0}^{\infty} f(u(s))(u(s)-1) d s$ exists and by the above condition

$$
\int_{0}^{\infty}(u(s)-1)^{2} d s<\infty
$$

As $\int_{0}^{\infty} u^{\prime \prime 2}(s) d s<\infty$ the conclusion follows from standard interpolation.

3 A boundary value problem in the half-line: bounded solutions yielding odd heteroclinics under symmetry

To solve (5) in case f and p are even it is enough to find a solution of the boundary value problem

$$
\begin{equation*}
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u(+\infty)=1 \tag{1}
\end{equation*}
$$

Indeed, if u is a solution of (1) then the odd extension of u solves (5).
To solve (1), using Proposition 2.1, we consider the approximated problem in a finite interval $[0, n], n \in \mathbb{N}$,

$$
\begin{equation*}
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 \tag{2}
\end{equation*}
$$

Lemma 3.1 Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $p: \mathbb{R} \rightarrow \mathbb{R}$ satisfy conditions $(f 1),(p),(h 1)$. Then for each $n \in \mathbb{N}$, there exists a solution u_{n} of (2) with $0 \leq u_{n} \leq N_{0}$ on $[0, n]$, where N_{0} is given by ($h 1$).

Proof - We divide the proof into several steps.

Step 1.- The modified problem. We define the function $f^{*}: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f^{*}(u)=\left\{\begin{array}{cc}
f\left(N_{0}\right), & \text { if } u>N_{0} \\
f(u), & \text { if } u \in\left[0, N_{0}\right] \\
f(0), & \text { if } u<0,
\end{array}\right.
$$

and consider the modified problem

$$
\begin{equation*}
u^{\prime \prime \prime}=f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 \tag{3}
\end{equation*}
$$

Step 2.- Reduction to a fixed point problem.
Claim. - For each $h \in \mathcal{C}([0, n])$, the linear problem

$$
\begin{equation*}
u^{\prime \prime \prime}-p(t) u^{\prime}=h(t), \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 \tag{4}
\end{equation*}
$$

has a unique solution. As is well known, it is sufficient to prove that the problem

$$
\begin{equation*}
u^{\prime \prime \prime}-p(t) u^{\prime}=0, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 \tag{5}
\end{equation*}
$$

has only the trivial solution. In fact, if (5) has a nontrivial solution, let $v=u^{\prime}$. Then v satisfies

$$
v^{\prime \prime}-p(t) v=0, \quad v^{\prime}(0)=0, \quad v(n)=0
$$

Multiplying the equation by v and integrating, we have

$$
\int_{0}^{n}\left(v^{\prime 2}(t)+p(t) v^{2}(t)\right) d t=0
$$

This implies that $v^{\prime} \equiv 0$ and as $v(n)=0$ we obtain $v \equiv 0$, i.e. $u^{\prime} \equiv 0$. Since $u(0)=0$, it follows that $u \equiv 0$.

By the above claim, we can define the solution operator $K: \mathcal{C}([0, n]) \rightarrow$ $\mathcal{C}([0, n])$ corresponding to (4). Then let $S: \mathcal{C}([0, n]) \rightarrow \mathcal{C}([0, n])$ be given by

$$
S u=K\left(f^{*}(u)\right) .
$$

It is clear that S is a completely continuous operator and that u is a solution of (3) if and only if u is a fixed point of S. In order to obtain a fixed point we consider the homotopy

$$
\begin{equation*}
u=K\left(\lambda f^{*}(u)\right), \quad \lambda \in[0,1], \tag{6}
\end{equation*}
$$

which is equivalent to the problem

$$
\begin{equation*}
u^{\prime \prime \prime}=\lambda f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 \tag{7}
\end{equation*}
$$

Step 3.- A priori estimates.

Claim 1. For all $\lambda \in[0,1]$, any solution of (7) is nonnegative on $[0, n]$. Let u be a solution of (7).
Case 1. $\lambda=0$. As in Step 2 above, we know that the solution of

$$
u^{\prime \prime \prime}=p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

is $u \equiv 0$.
Case 2. $\lambda \in] 0,1]$. Assume by contradiction that u takes negative values. Then the boundary conditions imply that for some $t_{1}<t_{2}$ we have $u\left(t_{1}\right)=$ 0 , and $u(t)<0$ for all $t \in] t_{1}, t_{2}\left[, u^{\prime}\left(t_{2}\right)=0\right.$ and $\left.\forall t \in\right] t_{1}, t_{2}\left[, u^{\prime}(t)<0\right.$. Otherwise t_{1} would be an accumulation point of critical points of u, implying $0=u^{\prime \prime \prime}\left(t_{1}\right)-p\left(t_{1}\right) u^{\prime}\left(t_{1}\right)=\lambda f(0)<0$, a contradiction. Now we have, for some $t \in] t_{1}, t_{2}[$,

$$
0=u^{\prime}\left(t_{2}\right)=u^{\prime}\left(t_{1}\right)+u^{\prime \prime}\left(t_{1}\right)\left(t_{2}-t_{1}\right)+\left[\lambda f^{*}(u(t))+p(t) u^{\prime}(t)\right] \frac{\left(t_{2}-t_{1}\right)^{2}}{2}
$$

Since $\lambda f^{*}(u(t))+p(t) u^{\prime}(t) \leq \lambda f(0)<0$ and $u^{\prime}\left(t_{1}\right) \leq 0$ then $u^{\prime \prime}\left(t_{1}\right)>0$ and hence $t_{1}>0$. Multiplying the equation (7) by u^{\prime} and integrating by parts between 0 and t_{1} we obtain the contradiction

$$
\begin{aligned}
0 & >u^{\prime}\left(t_{1}\right) u^{\prime \prime}\left(t_{1}\right)-\int_{0}^{t_{1}} u^{\prime \prime 2}(s) d s \\
& =\int_{0}^{t_{1}} \lambda f^{*}(u(s)) u^{\prime}(s) d s+\int_{0}^{t_{1}} p(s) u^{\prime 2}(s) d s=\int_{0}^{t_{1}} p(s) u^{\prime 2}(s) d s \geq 0
\end{aligned}
$$

Claim 2. For any $n \in \mathbb{N}, \lambda \in[0,1]$ and any solution u of (7) we have,

$$
\text { for all } t \in[0, n], \quad|u(t)| \leq N_{0}
$$

By Claim 1 we have that $u(t) \geq 0$ for all $t \in[0, n]$. Let a solution u of (7) attain a positive maximum at some point $\left.\left.t_{0} \in\right] 0, n\right]$. This implies in particular that $\lambda \neq 0$. Now, multiplying (7) by u^{\prime} and integrating in $\left[0, t_{0}\right]$, we have

$$
0 \geq-\int_{0}^{t_{0}} u^{\prime \prime 2}(s) d s-\int_{0}^{t_{0}} p(s) u^{\prime 2}(s) d s=\lambda F^{*}\left(u\left(t_{0}\right)\right)
$$

with $F^{*}(u)=\int_{0}^{u} f^{*}(s) d s$. Hence by assumption (h1) and construction, we obtain that $0 \leq u(t) \leq N_{0}$.

Step 4.- Conclusion.

By standard results of Leray-Schauder degree theory the equation (6) has a solution u for $\lambda=1$ which is a solution of (3). Moreover by Claims 1 and 2 we have that $0 \leq u \leq N_{0}$ and hence it is also a solution of (2).

Remark 3.1 We do not use the all strength of (h1). We just used the fact that $f(0)<0$ and there exists $N_{0}>0$ such that $F\left(N_{0}\right) \geq 0$. In that case, without loss of generality, we can assume $f\left(N_{0}\right) \geq 0$.

Lemma 3.2 Under the assumptions of Lemma 3.1, there exists a number $K>0$ with the property that, for all $n \in \mathbb{N}$,

$$
\left\|u_{n}\right\|_{\mathcal{C}^{3}([0, n])} \leq K
$$

Proof - We first show that $\left\|u_{n}^{\prime \prime}\right\|_{L^{2}(0, n)}$ is bounded independently of n. Indeed, multiplying the equation in (2) by u_{n}^{\prime} and integrating by parts between 0 and n, using the boundary conditions we obtain

$$
\int_{0}^{n} u_{n}^{\prime \prime 2}(s) d s=-\int_{0}^{n} f\left(u_{n}(s)\right) u_{n}^{\prime}(s) d s-\int_{0}^{n} p(s) u_{n}^{\prime 2}(s) d s \leq-\min _{\left[0, N_{0}\right]} F .
$$

Let us extend u_{n} to $\left[0,+\infty\left[\right.\right.$ with the constant value $u_{n}(n)$ in $[n,+\infty[$, and define v_{n} as the odd extension of u_{n} to \mathbb{R}. Then $v_{n} \in \mathcal{C}^{1}(\mathbb{R})$ and by the Gagliardo-Nirenberg's interpolation inequality [10], there is a constant C such that

$$
\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})} \leq C\left\|v_{n}^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}^{2 / 3}\left\|v_{n}\right\|_{\mathcal{C}(\mathbb{R})}^{1 / 3}
$$

Since

$$
\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}, \quad\left\|v_{n}^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}=2\left\|u_{n}^{\prime \prime}\right\|_{L^{2}(0, n)}, \quad\left\|v_{n}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}\right\|_{\mathcal{C}([0, n])}
$$

we infer

$$
\sup _{n}\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}<\infty
$$

and the differential equation yields

$$
\sup _{n}\left\|u_{n}^{\prime \prime \prime}\right\|_{\mathcal{C}([0, n])}<\infty
$$

The conclusion now follows from standard interpolation.

Proposition 3.3 Assume hypotheses $(f 1)$, (p), ($h 1$). Then the boundary value problem (1) has a solution $u \in \mathcal{C}^{3}([0,+\infty[)$ which is nonnegative on $\left[0,+\infty\left[\right.\right.$ and such that $u^{\prime}, u^{\prime \prime}$ and $u^{\prime \prime \prime}$ are bounded in \mathbb{R}^{+}.

Proof - By Lemmas 3.1 and 3.2 we have that, for each $n \in \mathbb{N}$, the equation $u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}$ has a solution u_{n} defined in $[0, n], u_{n}(0)=u_{n}^{\prime \prime}(0)=0$, $0 \leq u_{n} \leq N_{0}$ and $u_{n}^{\prime}, u_{n}^{\prime \prime}$ and $u_{n}^{\prime \prime \prime}$ are bounded by a constant $M>0$ which is independent of $n \in \mathbb{N}$. Then using Ascoli's theorem and the Cantor diagonal process we can select a sequence of values of $n_{k} \rightarrow \infty$ and $u \in \mathcal{C}^{3}([0,+\infty[)$ so that for any $a>0$ we have that $u_{n_{k}}$ converges to u in $\mathcal{C}^{3}([0, a])$ and u solves $u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}$ and satisfies the boundary conditions at $t=0$. As $u(0)=0, u$ is not a constant solution and by the arguments in the proof of Proposition 2.1, u satisfies the boundary condition at infinity as well.

Extending any solution of (1) by oddness, the last proposition implies
Theorem 3.4 Assume that hypotheses (f1), (p), ($h 1$), (s) and (s^{\prime}) hold. Then (5) has a odd solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ which nonnegative in $] 0,+\infty[$ and satisfies

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

Remark 3.2 The function $F(u)-u^{\prime} u^{\prime \prime}$ plays the role of a Liapunov function for the equation $u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}$. In fact in the case where p is constant and we have uniqueness of the Cauchy problem, for instance when f is locally Lipschitz-continuous, we can obtain a proof of the Theorem 3.4 using that the Liapunov function is strictly decreasing along the nonconstant solutions and the La Salle invariance principle [13].

Moreover the existence of the Liapunov function may be used to see that the problem

$$
u^{\prime \prime \prime}=f(u), u(-\infty)=-1, u(+\infty)=1
$$

has no solution if f is a continuous odd function with $f(1)=0$.

4 The non-symmetric problem

If we drop the assumptions of symmetry (s) and $\left(s^{\prime}\right)$ the existence of heteroclinics of (5) becomes considerably more complicated.

Theorem 4.1 Assume that hypotheses $(f 1)$, (p) and ($h 2$) hold. Then (5) has a solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ which satisfies

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

Proof - As in the symmetric case, to solve (5) we start with an approximated problem in a finite interval $[-n, n], n \in \mathbb{N}$,

$$
\begin{equation*}
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0 . \tag{1}
\end{equation*}
$$

and we prove the equivalent of Lemma 3.1 for this problem, i.e., for all $n \in \mathbb{N}$, there exists a solution u_{n} of (1) with, for all $t \in[-n, n], \alpha<u(t)<\beta$ where α and β are given by ($h 2$).

We divide the proof into several steps.
Step 1.- The modified problem. We define the functions $f_{+}, f_{-}:[-n, n] \times \mathbb{R} \rightarrow$ \mathbb{R} by

$$
f_{+}(u)=\left\{\begin{array}{cc}
f(\beta), & \text { if } u>\beta, \\
f(u), & \text { if } u \in[-1, \beta], \\
0, & \text { if } u<-1,
\end{array} \quad f_{-}(u)=\left\{\begin{array}{cc}
0, & \text { if } u>1, \\
f(u), & \text { if } u \in[\alpha, 1], \\
f(\alpha), & \text { if } u<\alpha
\end{array}\right.\right.
$$

and we set

$$
f^{*}(t, u)= \begin{cases}f_{+}(u), & \text { if } t \geq 0 \\ f_{-}(u), & \text { if } t<0\end{cases}
$$

Consider then the modified problem

$$
\begin{equation*}
u^{\prime \prime \prime}=f^{*}(t, u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0 . \tag{2}
\end{equation*}
$$

Step 2.- Reduction to a fixed point problem.
Claim. - For each $h \in \mathcal{C}([-n, n])$, the linear problem

$$
\begin{equation*}
u^{\prime \prime \prime}-p(t) u^{\prime}=h(t), \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0, \tag{3}
\end{equation*}
$$

has a unique solution. The proof follows as in Lemma 3.1.
By the above claim, we can define the solution operator $K: \mathcal{C}([-n, n]) \rightarrow$ $\mathcal{C}([-n, n])$ corresponding to (3). Let

$$
\begin{aligned}
& \Omega=\{u \in \mathcal{C}([-n, n]) \mid \\
& \quad u(-n)<1 \text { and } u(n)>-1 \text { and, } \forall t \in[-n, n], \alpha<u(t)<\beta\} .
\end{aligned}
$$

Then let $S: \bar{\Omega} \rightarrow \mathcal{C}([-n, n])$ be given by

$$
S u=K\left(f^{*}(t, u)\right) .
$$

It is clear that S is a completely continuous operator and that u is a solution of (2) if and only if u is a fixed point of S. In order to obtain a fixed point we consider the homotopy

$$
\begin{equation*}
u=K\left(\lambda f^{*}(t, u)\right), \quad \lambda \in[0,1], \tag{4}
\end{equation*}
$$

which is equivalent to the problem

$$
\begin{equation*}
u^{\prime \prime \prime}=\lambda f^{*}(t, u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0 . \tag{5}
\end{equation*}
$$

Step 3.- A priori estimates. Let us prove that, for all $\lambda \in[0,1]$, there is no solution of (5) on $\partial \Omega$.
Claim 1-For $\lambda=0$, the solution u of (5) is in Ω. In fact it is easy to observe that $u \equiv 0$ and hence $u \in \Omega$.
Claim 2-For $\lambda \in] 0,1]$ and u a solution of (5) with $u(-n)<1$ and $u(n)>$ -1 , we have, $\forall t \in[0, n],-1<u(t)<\beta$ and, $\forall t \in[-n, 0], \alpha<u(t)<1$. In case u is constant, the result is trivial, so we can assume that u is not constant. Let $F_{+}(u)=\int_{0}^{u} f_{+}(s) d s$ and $F_{-}(u)=\int_{0}^{u} f_{-}(s) d s$. Observe that, if u is a solution of (5), then $f^{*}(\cdot, u(\cdot))$ is continuous in $[-n, n]$ and therefore $u \in \mathcal{C}^{3}([-n, n])$. Then

$$
\begin{array}{ll}
\frac{d}{d t}\left[\lambda F_{+}(u(t))-u^{\prime}(t) u^{\prime \prime}(t)\right]=-u^{\prime \prime 2}(t)-p(t) u^{\prime 2}(t), & \text { for } t \in[0, n] \\
\frac{d}{d t}\left[\lambda F_{-}(u(t))-u^{\prime}(t) u^{\prime \prime}(t)\right]=-u^{\prime \prime 2}(t)-p(t) u^{\prime 2}(t), & \text { for } t \in[-n, 0]
\end{array}
$$

Since the solution is not constant and $F_{+}(u(0))=0=F_{-}(u(0))$, these inequalities yield

$$
\begin{equation*}
F_{+}(u(n))<F_{-}(u(-n)) . \tag{6}
\end{equation*}
$$

Now the behaviour of F_{+}and F_{-}immediately implies $\left.u(n) \in\right]-1, \beta$ and $u(-n) \in] \alpha, 1[$. Hence for all $t \in[0, n],-1<u(t)<\beta$: otherwise suppose $\min _{0 \leq t \leq n} u(t)=u\left(t_{0}\right) \leq-1$. Then $\left.t_{0} \in\right] 0, n\left[, u^{\prime}\left(t_{0}\right)=0\right.$ and by the same argument $F_{+}\left(u\left(t_{0}\right)\right)<F_{-}(u(-n))$, a contradiction. A similar argument proves that $\max _{0 \leq t \leq n} u(t) \geq \beta$ cannot hold. We proceed in the same way to show that for all $t \in[-n, 0], \alpha<u(t)<1$.

Claim 3 - For $\lambda \in] 0,1]$, there is no solution of (5) on $\partial \Omega$. Otherwise, by Claim 2, we have a solution u with either $u(-n)=1$ or $u(n)=-1$. If we have a solution u with $u(-n)=1$, then, by (6) again, we have $F_{+}(u(n))<F_{-}(1)$ which contradicts the fact that $\min F_{+}=F_{-}(1)$. In the same way, if we have a solution u with $u(n)=-1$, we find a similar contradiction.

Step 4.- Conclusion of the proof.
By standard results of Leray-Schauder degree theory, the equation (4) has a solution $u \in \Omega$ for $\lambda=1$ which is a solution of (2) and hence also a solution of (1) by Claim 2.

We have seen that, for all n,

$$
\left\|u_{n}\right\|_{\mathcal{C}([-n, n])} \leq \max \{|\alpha|, \beta\} .
$$

As in the proof of Lemma 3.2, we deduce

$$
\begin{align*}
\left\|u^{\prime \prime}\right\|_{L^{2}(-n, n)}^{2} & \leq\left\|u^{\prime \prime}\right\|_{L^{2}(-n, n)}^{2}+\int_{-n}^{n} p(t) u^{\prime 2}(t) d t \tag{7}\\
& =F(u(-n))-F(u(n)) \leq 2 \max _{[\alpha, \beta]}|F(u)| .
\end{align*}
$$

Define v_{n} as the extension of u_{n} to \mathbb{R} such that, $\forall t \leq-n, v_{n}(t)=u_{n}(-n)$ and, $\forall t \geq n, v_{n}(t)=u_{n}(n)$. Then $v_{n} \in \mathcal{C}^{1}(\mathbb{R})$ and, as in Lemma 3.2, the Gagliardo-Nirenberg inequality yields the boundedness of $\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})}=$ $\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([-n, n])}$. The proof then concludes as in Section 3.

Remark 4.1 Theorem 4.1 extends to the non autonomous case [9, Theorem 0], [8] and [6, Theorem 5.2]. Even for the autonomous case our theorem improves the previous ones since we do not impose to the function f to be \mathcal{C}^{1} or Lipschitz continuous.

5 Uniqueness of the kink solution

In the following result we prove that, under condition (h4), the solutions of (5) have a unique zero.

Proposition 5.1 Suppose that f and p satisfy conditions $(f 1),(p)$ and ($h 4$). Then every solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ of (5) has a unique zero t_{0} and $\forall t \in \mathbb{R} \backslash\left\{t_{0}\right\}$, $u(t)\left(t-t_{0}\right)>0$.

Proof - Observe that, by Proposition 2.1, every solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ of (5) satisfies $u^{\prime}(+\infty)=u^{\prime \prime}(+\infty)=0$ and, by Proposition 2.2 , for all $t \in \mathbb{R}$, $u(t) \in[\alpha, \beta]$. Moreover, by assumptions, for all $x \in\left[\alpha, 0\left[, \int_{x}^{0} F(r) d r>0\right.\right.$ and, for all $x \in] 0, \beta], \int_{0}^{x} F(r) d r<0$. Let us prove that, if u is a solution of (5) such that $u\left(t_{0}\right)=0$, it satisfies $u^{\prime}\left(t_{0}\right)>0$ and hence a solution of (5) has a single zero. Assume by contradiction that $u^{\prime}\left(t_{0}\right) \leq 0$.
Case 1. $u^{\prime \prime}\left(t_{0}\right) \leq 0$. As $u\left(t_{0}\right)=0, u^{\prime}\left(t_{0}\right) \leq 0, u^{\prime \prime}\left(t_{0}\right) \leq 0$ and $u^{\prime \prime \prime}\left(t_{0}\right)=$ $f(0)+p\left(t_{0}\right) u^{\prime}\left(t_{0}\right)<0$, we have that $u^{\prime}(t)$ is negative for values of t close to t_{0}. Define $t_{1}=\sup \left\{t>t_{0} \mid \forall s \in\right] t_{0}, t\left[, u^{\prime}(s)<0\right\}$. As $u(+\infty)=1$, we have $t_{1}<+\infty, u^{\prime}\left(t_{1}\right)=0$ and $u^{\prime}(t)<0$ on $] t_{0}, t_{1}[$.

As $F(u(t))-u^{\prime}(t) u^{\prime \prime}(t)$ is nonincreasing along the solutions of (5), for $t \geq t_{0}$,

$$
F(u(t))-u^{\prime}(t) u^{\prime \prime}(t) \leq-u^{\prime}\left(t_{0}\right) u^{\prime \prime}\left(t_{0}\right) \leq 0 .
$$

Hence, we have

$$
0 \leq \int_{t_{0}}^{t_{1}}\left[F(u(t)) u^{\prime}(t)-u^{\prime 2}(t) u^{\prime \prime}(t)\right] d t=-\int_{u\left(t_{1}\right)}^{0} F(r) d r+\frac{u^{\prime 3}\left(t_{0}\right)}{3} .
$$

It follows that

$$
\int_{u\left(t_{1}\right)}^{0} F(r) d r \leq \frac{u^{\prime 3}\left(t_{0}\right)}{3} \leq 0
$$

which contradicts $u\left(t_{1}\right) \in\left[\alpha, 0\left[\right.\right.$ and $\int_{u\left(t_{1}\right)}^{0} F(r) d r>0$.
Case 2. $u^{\prime \prime}\left(t_{0}\right)>0$. This case is similar to the previous one considering $u(t)$ for $t<t_{0}$.

Conclusion - We deduce from the two previous case that $u^{\prime}\left(t_{0}\right)>0$ and hence u has a unique zero.

In the following theorem we prove the uniqueness of solution for (5) under slightly stronger assumptions than in previous sections.

Theorem 5.2 Suppose that f and p satisfy conditions $(f 1),(p),(h 3)$ and (h4). Then, for every $t_{0} \in \mathbb{R}$, there exist $A>0$ and $B \in \mathbb{R}$ such that, for every solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ of (5) such that $u\left(t_{0}\right)=0$, we have $u^{\prime}\left(t_{0}\right)=A$ and $u^{\prime \prime}\left(t_{0}\right)=B$. Moreover the solution of (5) has a single zero.

If moreover f is locally Lipschitz on $[\alpha, \beta]$, then, for every $t_{0} \in \mathbb{R}$, there exists at most one solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ of (5) such that $u\left(t_{0}\right)=0$. Moreover u is positive in $] t_{0}, \infty[$, negative on $]-\infty, t_{0}[$ and

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

Proof - Let $t_{0} \in \mathbb{R}$.
Step 1 - There exists $A \in \mathbb{R}$ such that every solution u of (5) such that $u\left(t_{0}\right)=0$ satisfies $u^{\prime}\left(t_{0}\right)=A$. Otherwise, let u_{1} and u_{2} be two solutions with $u_{1}\left(t_{0}\right)=u_{2}\left(t_{0}\right)=0$ and $u_{1}^{\prime}\left(t_{0}\right)>u_{2}^{\prime}\left(t_{0}\right)$. Recall that, by Proposition 5.1, for every $t \neq t_{0}$, for $i=1,2$ we have $u_{i}(t)\left(t-t_{0}\right)>0$.

Let $w=u_{1}-u_{2}$ and observe that

$$
\begin{aligned}
& w^{\prime \prime \prime}=f\left(u_{1}\right)-f\left(u_{2}\right)+p(t) w^{\prime} \\
& w\left(t_{0}\right)=0, \quad w^{\prime}\left(t_{0}\right)>0, \quad w(-\infty)=0, \quad w(+\infty)=0 .
\end{aligned}
$$

It follows that for t close to $t_{0}, w^{\prime}(t)>0$ and since $w\left(t_{0}\right)=w(-\infty)=$ $w(+\infty)=0$, there exists $t_{1}<t_{0}<t_{2}$ such that $w^{\prime}(t)>0$ on $] t_{1}, t_{2}[$ and $w^{\prime}\left(t_{1}\right)=w^{\prime}\left(t_{2}\right)=0$. Next as f is nondecreasing on \mathbb{R}^{+}and nonincreasing on \mathbb{R}^{-}and, for every $t \neq t_{0}$, for $i=1,2$ we have $u_{i}(t)\left(t-t_{0}\right)>0$, we have that $z=w^{\prime}$ satisfies

$$
\begin{gathered}
\left.z^{\prime \prime}=f\left(u_{1}\right)-f\left(u_{2}\right)+p(t) z>0, \text { on }\right] t_{1}, t_{2}[\\
z\left(t_{1}\right)=z\left(t_{2}\right)=0, \quad z\left(t_{0}\right)>0,
\end{gathered}
$$

which contradicts the maximum principle.
Step 2 - There exists $B \in \mathbb{R}$ such that every solution u of (5) such that $u\left(t_{0}\right)=0$ satisfies $u^{\prime \prime}\left(t_{0}\right)=B$. Otherwise, let u_{1} and u_{2} be two solutions with $u_{1}\left(t_{0}\right)=u_{2}\left(t_{0}\right)=0$ and $u_{1}^{\prime \prime}\left(t_{0}\right)>u_{2}^{\prime \prime}\left(t_{0}\right)$. By Step 1 , we have $u_{1}^{\prime}\left(t_{0}\right)=u_{2}^{\prime}\left(t_{0}\right)$. As in Step 1, we observe that there exists $t_{2}>t_{0}$ such that $w=u_{1}-u_{2}$ satisfies

$$
\begin{gathered}
\left.w^{\prime \prime \prime}=f\left(u_{1}\right)-f\left(u_{2}\right)+p(t) w^{\prime}, \text { on }\right] t_{0}, t_{2}[\\
w\left(t_{0}\right)=0, \quad w^{\prime}\left(t_{0}\right)=0, \quad w^{\prime \prime}\left(t_{0}\right)>0, \quad w^{\prime}\left(t_{2}\right)=0
\end{gathered}
$$

and hence $z=w^{\prime}$ satisfies

$$
\begin{gathered}
\left.z^{\prime \prime}=f\left(u_{1}\right)-f\left(u_{2}\right)+p(t) z>0, \text { on }\right] t_{0}, t_{2}[\\
z\left(t_{0}\right)=z\left(t_{2}\right)=0, \quad z^{\prime}\left(t_{0}\right)>0,
\end{gathered}
$$

which contradicts the Hopf maximum principle.

Combining Theorems 4.1 and 5.2 we obtain the following result in the particular case where p is a constant.

Theorem 5.3 Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz on $[\alpha, \beta]$ and satisfies $(f 1),(h 3)$ and ($h 4$). In addition assume p is a nonnegative constant. Then (5) has a unique (up to translations) solution $u \in \mathcal{C B}^{3}(\mathbb{R})$. Moreover u has a unique simple zero and

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

In the symmetric case, we obtain the following result.
Theorem 5.4 Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz on $[\alpha, \beta]$ and satisfies conditions $(f 1),(p),(h 3)$ and (s). Then there exists at most one solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ of (5) such that $u(0)=0$.

If $\left(s^{\prime}\right)$ is satisfied too, then the problem (5) has a unique solution u such that $u(0)=0$. Moreover, u is odd, positive on $[0,+\infty[$ and satisfies

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

Proof - We just have to prove that ($h 4$) is satisfied. In that case, we conclude by Theorems 3.4 and 5.2. Let u_{1} be the positive zero of F and assume $\int_{0}^{\beta} F(s) d s \geq 0$. As F is convex on $[0, \beta]$ and $-F(1)=F(\beta)>0$, we have $1<\frac{1+\beta}{2}<u_{1}<\beta$. Hence, we obtain the contradiction

$$
\int_{u_{1}}^{\beta} F(r) d r \geq\left|\int_{0}^{u_{1}} F(r) d r\right|>\left|\int_{1}^{u_{1}} F(r) d r\right|>|F(1)| \frac{\beta-1}{4}>\int_{u_{1}}^{\beta} F(r) d r,
$$

which proves that $\int_{0}^{\beta} F(s) d s>0$. The proof that $\int_{\alpha}^{0} F(s) d s<0$ is similar.

Remark 5.1 Theorem 5.4 extends the uniqueness result in [12, Theorem 3.8] to the nonautonomous case.

As an immediate consequence of the previous results we have the following one for the model problem.

Corollary 5.5 Consider the problem

$$
\begin{equation*}
\lambda u^{\prime \prime \prime}=u^{2}-1, \quad u(-\infty)=-1, \quad u(+\infty)=1 \tag{1}
\end{equation*}
$$

Then we have:
(i) For $\lambda>0$ there exists a unique solution $u \in \mathcal{C}^{3}(\mathbb{R})$ of (1) (up to translations). Moreover u has a unique simple zero, is odd around it, and

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0 .
$$

(ii)For $\lambda<0$ problem (1) has no solution.

References

[1] A. Bressan, Hyperbolic systems of conservation laws. The onedimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, 2000.
[2] D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, A. Cañada, P. Drabek, A. Fonda, editors, Elsevier (2006).
[3] C. Conley, Isolated invariant sets and the Morse index, C.B.M.S. 38, Amer. Math. Soc., Providence 1978.
[4] I.M. Gel'fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk 141959 no. 2 (86), 87-158.
[5] N. Kopell and L.N. Howard, Bifurcations and trajectories joining critical points, Advances in Math. 18 (1975), 306-358.
[6] V. Manukian and S. Schecter, Travelling waves for a thin liquid film with surfactant on an inclined plane, Nonlinearity 22 (2009), 85-122.
[7] Ch.K. McCord, Uniqueness of connecting orbits in the equation $Y^{(3)}=$ $Y^{2}-1$, J. Math. Anal. Appl. 114 (1986), 584-592.
[8] M.S. Mock, On fourth-order dissipation and single conservation laws, Comm. Pure Appl. Mathem. 29 (1976), 383-388.
[9] M.S. Mock, The half-line boundary value problem for $u_{x x x}=f(u)$, J. Differential Equations 32 (1979), 258-273.
[10] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), 115-162.
[11] J. Smoller, Shock waves and reaction-diffusion equations, SpringerVerlag, New York 1983.
[12] J.F. Toland, Existence and uniqueness of heteroclinic orbits for the equation $\lambda u^{\prime \prime \prime}+u^{\prime}=f(u)$, Proc. Royal Soc. Edinburgh 109A (1988), 23-36.
[13] W. Walter, Ordinary Differential Equations, Springer-Verlag, New York 1998.

[^0]: Abstract
 We study the existence of heteroclinics connecting the two equilibria ± 1 of the third order differential equation

 $$
 u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}
 $$

 ${ }^{1}$ Partially supported by Ministerio de Educación y Ciencia, Spain, Project MTM201015314 and FEDER.
 ${ }^{2}$ Supported by Fundação para a Ciência e a Tecnologia, Financiamento Base ISL-209 (2010) and PEst-OE/MAT/UI0209/2011 .

