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Abstract

We derive necessary and sufficient conditions for the existence of

a least and a greatest fixed point of an operator which satisfies the

hypothesis of Schauder’s theorem. The so obtained results are applied

to prove existence of extremal solutions for some initial and boundary

value problems.
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1 Introduction

In an ordered normed space it is well know that a nondecreasing

completely continuous selfmap of a given order interval has a least

and a greatest fixed point. In general, this result is not true if we

do not assume any monotonicity condition. The aim of this paper is

to characterize the existence of the extremal fixed points for a com-

pletely continuous operator T which satisfies Schauder’s theorem. The

statement of this result, which is given in section 2, is as follows: T

has a greatest fixed point if and only if the set of fixed points of T is

upward directed (i.e. for any pair of fixed points there exists another

one which is greater than both of them). We point out that in recent

years the directness has played a crucial role to prove the existence of

extremal solutions in the framework of nonlinear elliptic and parabolic

problems (see the monograph [1]).

In section 3 we present two illustrative applications of our re-

sults. The first one is a new and shorter proof of the existence of

extremal solutions for the scalar first order initial value problem with

Carathéodory functions. In the second one we give a proof which is

simpler than that obtained in the monograph [3] for the existence of

extremal solutions, between assumed lower and upper solutions, for a

second order periodic boundary value problem.
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2 Abstract results

We say that a subset Y of a partially ordered set (poset) X is

upward directed if for each pair y1, y2 ∈ Y there exists y3 ∈ Y such

that y1 ≤ y3 and y2 ≤ y3. Analogously, Y is downward directed if for

each pair y1, y2 ∈ Y there exists y3 ∈ Y such that y3 ≤ y1 and y3 ≤ y2.

A poset X is a lattice if x1 ∨ x2 := sup{x1, x2} and x1 ∧ x2 :=

inf{x1, x2}, exist for all x1, x2 ∈ X. Every totally ordered set is a

lattice and every lattice is upward and downward directed. A lattice

X is complete when each non empty subset B ⊂ X has supremum,

denoted by
∨

B, and infimum, denoted by
∧

B. In particular, every

complete lattice has the maximum and the minimum.

Let N be a normed space. A subset K ⊂ N is a cone if it is closed,

K + K ⊂ K, λK ⊂ K for all λ ≥ 0 and K ∩ (−K) = {0}. A cone K

yields a partial ordering in N given by x ≤ y if and only if y − x ∈ K.

N is an ordered normed space if N is ordered by a cone.

In an ordered normed space N we have that the intervals

(x] := {z ∈ X : z ≤ x} and [x) := {z ∈ X : x ≤ z}

are closed for all x ∈ N , because (x] = x−K and [x) = x + K.

An operator T : D ⊂ N → N is called completely continuous if it

is continuous and moreover T (M) is a compact set whenever M ⊂ D

is bounded. We say that x∗ ∈ D is the greatest fixed point of T if x∗ is

a fixed point of T and if x ≤ x∗ for any other fixed point x ∈ D. The

least fixed point is defined similarly by reversing the inequality. When

both, the least and the greatest fixed point of T , exist we call them
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extremal fixed points.

The following theorem is our main result.

Theorem 2.1 Let N be an ordered normed space, D ⊂ N a non

empty, bounded, closed and convex subset and T : D → D a completely

continuous operator. Then the set of fixed points of T

P = {x ∈ D : Tx = x},

is compact and non empty. Moreover the following claims hold:

i) T has a greatest (least) fixed point if and only if P is upward

(downward) directed.

ii) If P is a lattice then P is a complete lattice.

Proof. Schauder’s fixed point theorem ensures that P is non empty.

Moreover, P is closed, because P = (T − Id)−1(0), and since T (D)

is a compact set and P = T (P ) ⊂ T (D) we deduce that P is also

compact.

Proof of i). If T has a greatest fixed point then obviously P is upward

directed. Conversely, suppose that P is upward directed. Then the

following family of closed subsets of P

F1 = {[x) ∩ P : x ∈ P}

has the finite intersection property. Since P is compact we have that
⋂

x∈P

([x) ∩ P ) contains a point x∗, which is a greatest fixed point of T

because x∗ ∈ P and x∗ ∈ [x), i.e. x∗ ≥ x, for all x ∈ P . By using dual

arguments we prove that T has a least fixed point if and only if P is

downward directed.
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Proof of ii). Suppose that P is a lattice and let B ⊂ P be a non

empty subset. Since P is upward directed we know, by claim i), that T

has a greatest fixed point x∗. Therefore the following family of closed

subsets of P

F2 = {[x, u] ∩ P : x ∈ B, u ∈ P is an upper bound of B},

is non empty, because x∗ ∈ P is an upper bound of B. Moreover F2

has the finite intersection property because

∨
{xi : i = 1, . . . , n} ∈

n⋂

i=1

([xi, ui] ∩ P ),

for any [xi, ui] ∩ P ∈ F2, i ∈ {1, . . . , n}. Then, since P is compact,

the intersection of all sets of the family F2 contains a point, which by

construction is the supremum of B in P . By using dual arguments

we prove that there exists the infimum of B in P and thus P is a

complete lattice. ut

A list of different general conditions which imply that an upward

directed set has the maximum can be founded in section 5 in [4].

3 Applications: existence of extremal

solutions of differential equations

3.1 A first order initial value problem

Let I = [0, T ], with T > 0. We say that f : I × R → R is a

Carathéodory function if for all x ∈ R the function f(·, x) is measur-

able, for a.a. t ∈ I the function f(t, ·) is continuous and moreover
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there exists m ∈ L1(I) such that

|f(t, x)| ≤ m(t) for a.a. t ∈ I and for all x ∈ R.

In case f : I × R→ R is a Carathéodory function by a solution of

problem

x′(t) = f(t, x(t)) for a.a. t ∈ I, x(0) = x0, (3.1)

we mean an absolutely continuous function x : I → R such that

x(0) = x0 and that satisfies the differential equation for almost all

t ∈ I. If xmax is a solution of (3.1) and for any other solution x we

have that

x(t) ≤ xmax(t) for all t ∈ I,

we say that xmax is the maximal solution of (3.1). The concept of

minimal solution xmin is defined in a similar way by reversing the

inequality. When both the maximal and the minimal solution, exist

we call them extremal solutions of (3.1).

It is well known that problem (3.1) has extremal solutions (see [2]).

Next we give a new and shorter proof of this fact using theorem 2.1.

Theorem 3.1 Suppose f : I × R → R is a Carathéodory function.

Then the solution set

S = {x : I → R : x is a solution of (3.1)},

is a non empty compact subset of C(I). Moreover S is a complete

lattice and in particular problem (3.1) has extremal solutions.

6



Proof. Clearly S matches up the set of fixed points P of operator

T : C(I) → C(I) defined for each x ∈ C(I) as

Tx(t) = x0 +
∫ t

t0

f(s, x(s))ds for all t ∈ I.

It is easy to prove that T is completely continuous and bounded.

Therefore it follows from theorem 2.1 that P = S is a non empty com-

pact subset of C(I). Moreover, C(I) with the cone of all nonnegative

functions is an ordered normed space and S = P is a lattice because

the maximum and the minimum (pointwise) of solutions of (3.1) is

also a solution of (3.1). Therefore, from theorem 2.1 ii) it follows that

P = S is a complete lattice and in particular the extremal solutions

of (3.1) exist. ut

3.2 A periodic boundary value problem

We consider the second order periodic problem

u′′(t) = f(t, u(t)), u(a) = u(b), u′(a) = u′(b), (3.2)

where a < b and f is continuous.

We define the concept of lower and upper C2-solutions of problem

(3.2) following [3]: a function α ∈ C([a, b]) such that α(a) = α(b) is

a C2-lower solution of problem (3.2) if its periodic extension on R,

defined by α(t) = α(t + b− a), is such that for any t0 ∈ R
either D−α(t0) < D+α(t0),

or there exist an open interval I0 with t0 ∈ I0 and a function α0 ∈
C1(I0,R) such that:
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(i) α(t0) = α0(t0) and α(t) ≥ α0(t) for all t ∈ I0;

(ii) α′′0(t0) exists and α′′0(t0) ≥ f(t0, α0(t0)).

A function β ∈ C([a, b]) such that β(a) = β(b) is a C2-upper solution

of problem (3.2) if its periodic extension on R is such that for any

t0 ∈ R
either D−β(t0) > D+β(t0),

or there exist an open interval I0 with t0 ∈ I0 and a function β0 ∈
C1(I0,R) such that:

(i) β(t0) = β0(t0) and β(t) ≤ β0(t) for all t ∈ I0;

(ii) β′′0 (t0) exists and β′′0 (t0) ≤ f(t0, β0(t0)).

The following result concerning lower and upper C2-solutions holds

(propositions 2.1 and 2.2 in [3]).

Proposition 3.2 Let α1 and α2 be C2-lower solutions. Then

α(t) = α1 ∨ α2(t) := max{α1(t), α2(t)} for all t ∈ [a, b],

is a C2-lower solution.

Let β1 and β2 be C2-upper solutions. Then

β(t) = β1 ∧ β2(t) = min{β1(t), β2(t)} for all t ∈ [a, b],

is a C2-upper solution.

Habets and De Coster prove the existence of extremal solutions of

(3.2) between α and β (theorem 2.4 of [3]) by using Akô’s method.

We are going to give a simpler and shorter proof based on theorem

2.1.
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Theorem 3.3 Let α and β be C2-lower and upper solutions of (3.2),

such that α ≤ β, define E = {(t, u) ∈ [a, b] × R : α(t) ≤ u ≤ β(t))}
and assume that f is continuous on E.

Then the solution set

S = {u ∈ C2([a, b]) : α ≤ u ≤ β, u is a solution of (3.2)},

is a non empty compact subset of C([a, b]). Moreover, there exist the

maximal, umax, and the minimal, umin, solutions of problem (3.2)

between α and β, that is, if u ∈ S then

umin(t) ≤ u(t) ≤ umax(t) for all t ∈ [a, b].

Proof. In theorem 2.3 in [3] the authors prove that S equals the set

of fixed points P of operator T : C([a, b]) → C([a, b]) defined for each

u ∈ C([a, b]) as

Tu(t) =
∫ b

a
G(t, s)(f(t, γ(s, u(s)))− γ(s, u(s)))ds,

where G(t, s) is the Green function that corresponds to problem

u′′(t)− u(t) = f(t), u(a) = u(b), u′(a) = u′(b),

and where γ : [a, b]× R→ R is defined by

γ(t, u) =





β(t), if u > β(t),

u, if α(t) ≤ u ≤ β(t),

α(t), if u < α(t).

Since T is completely continuous and bounded, we deduce by the-

orem 2.1 that P = S is a non empty compact subset of C([a, b]).
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Now, we are going to prove that S = P is upward directed with

respect to the order induced in C([a, b]) by the cone of nonnegative

functions. For given u1, u2 ∈ S proposition 3.2 ensures that α1 :=

u1 ∨ u2 ≤ β is a C2-lower solution of (3.2) and then, repeating the

above argument, there exists a solution u3 of (3.2) between α1 and β.

Then, since u3 ∈ S, u1 ≤ u3 and u2 ≤ u3, it follows that S = P is

upward directed.

Now, from theorem 2.1 i), we deduce the existence of a greatest

fixed point umax of T , which is the maximal solution of (3.2) in the

sector enclosed by α and β. By using a dual argument we prove that

problem (3.2) has the minimal solution between α and β. ut
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