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Abstract

In this work we present a necessary and sufficient condition for a decreasing map to have at

most one fixed point. Some applications to differential equations are also given.
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1 Introduction

It is well-known that a compact increasing operator T : [α, β] → [α, β], where [α, β] is a

nonempty interval in a Banach space E ordered by a positive cone, has the minimal fixed point

u and the maximal fixed point v in [α, β], in the sense that every fixed point x ∈ [α, β] satisfies

u ≤ x ≤ v. In [1, theorem 11] additional conditions on T are imposed which guarantee that u = v,

and therefore the uniqueness of the fixed point is obtained.

For nonmonote mappings Kellog proves in [2] the following theorem which ensures the unique-

ness of the fixed point in Schauder’s theorem (this result has been generalized by several authors

[3, 4, 5], but we present this version for simplicity).

Theorem A Let X be a real Banach space, D ⊂ X be an open, bounded, convex subset and

T : D̄ → D̄ be a compact continuous map which is continuously Fréchet differentiable on D.

Suppose that (a) for each x ∈ D, 1 is not an eigenvalue of T ′(x), and (b) for each x ∈ ∂D,

x 6= T (x). Then T has a unique fixed point.

In section 2 we study the uniqueness of fixed point for decreasing operators. In particular, we

present an elementary criterion which establishes that a decreasing operator T has at most one

fixed point if and only if the set of fixed points Fix(T ) is directed. By combining this criterion

with Schauder’s theorem we obtain the following alternative result to Theorem A.

Theorem B Let E be an ordered Banach space, D ⊂ E a closed, convex, bounded and nonempty

set and T : D → D a compact operator.
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If T is decreasing and Fix(T ) is directed then T has a unique fixed point.

In our work the condition “Fix(T ) is directed” is fundamental. It is known that every compact

operator T : D ⊂ E → D, with D and E as in Theorem B, has the minimal and the maximal

fixed points if and only if Fix(T ) is directed (see [6, Theorem 2.1]). Moreover, if T is decreasing

Theorem B asserts the uniqueness of the fixed point.

Whenever E is an usual function space (e.g. Ck(Ω), Lp(Ω), W n,m(Ω)) together with the natural

pointwise ordering the solution set S ⊂ E of a differential equation between given lower and

upper solutions is often directed (see [7]). Thus, if the differential equation may be rewritten as a

fixed point equation x = Tx, with T decreasing and such that Schauder’s theorem applies, then

Theorem B implies the uniqueness of the solution for the original differential equation.

As example of the applicability of our results we present in section 3 a uniqueness criterion

for a Cauchy problem and another one for a periodic boundary value problem.

2 Main results

Let X be a partially ordered set and Y ⊂ X. We say that Y is upward directed if for each

pair y1, y2 ∈ Y there exists y3 ∈ Y such that y1 ≤ y3 and y2 ≤ y3 and we say that Y is downward

directed if for each pair y1, y2 ∈ Y there exists y4 ∈ Y such that y4 ≤ y1 and y4 ≤ y2. Whenever

Y is upward and downward directed we say that Y is directed.

An operator T : D ⊂ X → X is decreasing if x, y ∈ D with x ≤ y implies Tx ≥ Ty. We

denote by Fix(T ) the set of fixed points of T , that is

Fix(T ) = {x ∈ D : x = Tx}.

Theorem 2.1 Let X a partially ordered set and T : D ⊂ X → X a decreasing operator. Then

T has at most one fixed point if and only if Fix(T ) is upward directed.

Proof. If T has at most one fixed point then obviously Fix(T ) is upward directed.

Conversely, assume that Fix(T ) is upward directed and that Fix(T ) 6= ∅. Then given x1, x2 ∈

Fix(T ) there exists x3 ∈ Fix(T ) such that x1 ≤ x3 and x2 ≤ x3. Now, since T is decreasing, it

follows that

x1 = Tx1 ≥ Tx3 = x3 and x2 = Tx2 ≥ Tx3 = x3.

Therefore x1 = x2, and the proof is complete. ut

Remark 2.1 It is clear that Theorem 2.1 remains true if we change “upward directed” by “down-

ward directed” or by “directed”.

Whenever Fix(T ) is not upward directed we cannot ensure in general the uniqueness of the

fixed point, as we shown in the following simple example: consider in R2 the usual componentwise

partial ordering and define T : [−1, 1]× [−1, 1] → [−1, 1]× [−1, 1] as

T (x1, x2) = (−x2,−x1) for all (x1, x2) ∈ [−1, 1]× [−1, 1].
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Then T is decreasing, Fix(T ) = {(x1, x2) ∈ R2 : x2 = −x1} is not upward directed, and T has

infinitely many fixed points.

In the hypotheses of Theorem 2.1 it is possible that Fix(T ) = ∅. If we combine Theorem 2.1

with, for example, Sadovskii’s fixed point theorem (see [8, theorem 11.A]), we obtain the following

“proper” uniqueness result, which in particular implies Theorem B at introduction.

Theorem 2.2 Let E be a Banach space equipped with a partial ordering, D ⊂ E a closed, convex,

bounded and nonempty set and T : D → D a condensing operator.

If T is decreasing and Fix(T ) is upward directed then T has a unique fixed point.

3 Applications to differential equations

3.1 A uniqueness criterion for a discontinuous Cauchy problem

Let a, b > 0, I = [t0, t0 +a], f : I× [x0−b, x0 +b] ⊂ R2 → R and consider the Cauchy problem

x′(t) = f(t, x(t)) for a.a. t ∈ I, x(t0) = x0. (3.1)

A Carathéodory solution of (3.1) is an absolutely continuous function x : I → R such that

x(t) ∈ [x0 − b, x0 + b] for all t ∈ I and which satisfies (3.1).

The following uniqueness result is an extension of [9, Theorem 2.2.1] to the case of Carathéodory

solutions.

Theorem 3.1 Assume there exists M ≥ 0 such that for a.a. t ∈ I

f(t, x)− f(t, y) ≥ M(x− y) if x0 − b ≤ x ≤ y ≤ x0 + b. (3.2)

Then, problem (3.1) has at most one Carathéodory solution.

Proof. The problem (3.1) is equivalent to the following one

x′(t)−Mx(t) = f(t, x(t))−Mx(t) for a.a. t ∈ I, x(t0) = x0, (3.3)

and the Carathéodory solutions of (3.3) are the fixed points of the operator T : D → C(I) defined

as

Tx(t) = x0e
M(t−t0) +

∫ t

t0

eM(t−s)(f(s, x(s))−Mx(s))ds,

for all t ∈ I and x ∈ D, where

D := {x ∈ C(I) : x(t) ∈ [x0 − b, x0 + b] for all t ∈ I, f(·, x(·)) is integrable in I}.

We notice that if a solution of (3.1) exists then D 6= ∅.

Given x1, x2 ∈ C(I) we consider the usual partial ordering:

x1 ≤ x2 if and only if x1(t) ≤ x2(t) for all t ∈ I.

From condition (3.2) we deduce that T is decreasing. Moreover Fix(T ) is upward directed

because the pointwise maximum of two Carathéodory solutions of (3.1) it is also a Carathéodory
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solution. Therefore, from Theorem 2.1 it follows that T has at most one fixed point, which is

equivalent to say that problem (3.1) has at most one Carathéodory solution in I. ut

Remark 3.1 Observe that f is not assumed to be continuous.

On the other hand, if for a.a. t ∈ I the function f(t, ·) is decreasing in [x0 − b, x0 + b], then f

satisfies condition (3.2) for M = 0.

3.2 A uniqueness criterion for a periodic boundary value problem

We consider the second order periodic problem

u′′(t) = f(t, u(t)), u(a) = u(b), u′(a) = u′(b), (3.4)

where a < b and f : [a, b]× R → R is a L1−Carathéodory function (see the definition in [10]).

To simplify the notations we extend f(t, x) by periodicity, i.e., f(t, x) = f(t + b− a, x) for all

(t, x) ∈ R2.

A function α ∈ C([a, b]) such that α(a) = α(b) is a lower solution of problem (3.4) if its periodic

extension on R is such that for any t0 ∈ R

either D−α(t0) < D+α(t0),

or there exist an open interval I0 such that t0 ∈ I0, α ∈ W 2,1(I0) and for a.a. t ∈ I0,

α′′(t) ≥ f(t, α(t)).

A function β ∈ C([a, b]) such that β(a) = β(b) is an upper solution of problem (3.4) if its

periodic extension on R is such that for any t0 ∈ R

either D−β(t0) > D+β(t0),

or there exist an open interval I0 such that t0 ∈ I0, β ∈ W 2,1(I0) and for a.a. t ∈ I0,

β′′(t) ≤ f(t, β(t)).

The following result [10, Theorem 1.1] ensures that a solution of (3.4) exists in the sector

between a lower and an upper solution.

Theorem 3.2 Let α and β be lower and upper solutions of (3.4) such that α ≤ β, define

E = {(t, x) ∈ [a, b]× R : α(t) ≤ x ≤ β(t))},

and assume that f : E → R is a L1−Carathéodory function.

Then the problem (3.4) has at least one solution x ∈ W 2,1(a, b) such that for all t ∈ [a, b]

α(t) ≤ x(t) ≤ β(t).

The main idea in the proof of Theorem 3.2 is to show the equivalence between the set of

solutions x ∈ W 2,1(a, b) of (3.4) such that α(t) ≤ x(t) ≤ β(t) for all t ∈ [a, b] and the set of fixed

points of operator T : C([a, b]) → C([a, b]) defined as

Tx(t) =

∫ b

a

GM (t, s)[f(t, γ(s, x(s)))−Mγ(s, x(s))]ds, (3.5)
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for all t ∈ [a, b] and x ∈ C([a, b]), where M > 0, γ : [a, b]× R → R is given by

γ(t, x) =


β(t), if x > β(t),

x, if α(t) ≤ x ≤ β(t),

α(t), if x < α(t),

and GM : [a, b]× [a, b] → R is the Green’s function of problem

x′′(t)−Mx(t) = f(t), x(a) = x(b), x′(a) = x′(b). (3.6)

Then, since the operator T is completely continuous and bounded, Schauder’s fixed point

theorem implies that T has a fixed point, which is a solution of (3.4). (In fact in [10] the authors

only consider the case M = 1, but the same result is true for any M > 0).

Whenever f(t, ·) is increasing De Coster and Habets proved that there exists a continuum of

solutions of problem (3.4) (see [10, Theorem 1.4]). Under a stronger assumption we are going to

prove that problem (3.4) has a unique solution between given lower and upper solutions.

Theorem 3.3 Let α and β be lower and upper solutions of (3.4) such that α ≤ β, define

E = {(t, x) ∈ [a, b]× R : α(t) ≤ x ≤ β(t))},

and assume that f : E → R is a L1−Carathéodory function and there exists M > 0 such that for

a.a. t ∈ [a, b]

f(t, x)− f(t, y) ≤ M(x− y) for all α(t) ≤ x ≤ y ≤ β(t). (3.7)

Then the problem (3.4) has a unique solution x ∈ W 2,1(a, b) such that for all t ∈ [a, b]

α(t) ≤ x(t) ≤ β(t).

Proof. We define [α, β] := {x ∈ C([a, b]) : α(t) ≤ x(t) ≤ β(t) for all t ∈ [a, b]}.

Since the solutions x ∈ W 2,1(a, b) of (3.4) which satisfy x ∈ [α, β] matches up the set of fixed

points of T , defined in (3.5), Theorem 3.2 implies that Fix(T ) 6= ∅.

In C([a, b]) we consider the pointwise ordering. Then the following claims hold.

Claim i).- T is decreasing.

Since the Green’s function of problem (3.6) satisfies GM (t, s) < 0 for all (t, s) ∈ [a, b]×[a, b] (see

[11, corollary 2.2]), since γ is increasing and from condition (3.7) it follows that T is decreasing.

Claim ii).- Fix(T ) is upward directed.

Let x1, x2 ∈ Fix(T ). Then x1 and x2 are solutions of (3.4), in particular are lower solutions,

which moreover satisfy x1, x2 ∈ [α, β]. We define

α1(t) := max{x1(t), x2(t)} for all t ∈ [a, b].

By [10, Theorem 1.2] we have that there exists a solution x3 of (3.4) between α1 and β, that is,

x3 ∈ Fix(T ) and α1 ≤ x3 ≤ β. Therefore, x1 ≤ x3 and x2 ≤ x3, which means that Fix(T ) is

upward directed.
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Then, Theorem 2.1 ensures that T has a unique fixed point, which is the unique solution of

(3.4) between α and β. ut

Corollary 3.4 Let f : [a, b]× R → R be a L1−Carathéodory function such that

(i) for some r1 ≤ r2 ∈ R and a.a. t ∈ [a, b] we have that f(t, r1) ≤ 0 ≤ f(t, r2).

(ii) for a.a. t ∈ [a, b], the function f(t, ·) is absolutely continuous and d
dx

f(t, x) ≥ M > 0 for

a.a. x ∈ [r1, r2].

Then the problem (3.4) has a unique solution x ∈ W 2,1(a, b) such that for all t ∈ [a, b]

r1 ≤ x(t) ≤ r2.

Proof. By condition (i) the functions α(t) = r1 and β(t) = r2 for all t ∈ [a, b] are a lower and

an upper solutions, respectively, and α ≤ β. Moreover, condition (ii) implies that (3.7) holds.

Therefore, the conclusion of the corollary follows from Theorem 3.3. ut

Remark 3.2 Theorem 3.3 asserts the uniqueness of solution of problem (3.4) in the functional

interval [α, β], but it is possible that another solution x̄ of problem (3.4) exists ( in this case, of

course, x̄ 6∈ [α, β]).

For example, consider the problem

u′′(t) = sin(u(t)), u(0) = u(2π), u′(0) = u′(2π). (3.8)

Taking r1 = −1, r2 = 1 and M = cos(1) > 0, Corollary 3.4 is applicable to problem (3.8) and

then there exists a unique solution x ∈ W 2,1(0, 2π) such that −1 ≤ x(t) ≤ 1 for all t ∈ [0, 2π]

(that solution is obviously x(t) = 0). Nevertheless, problem (3.8) has infinitely many solutions.
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