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SOLVABILITY OF SOME Φ–LAPLACIAN SINGULAR DIFFERENCE
EQUATIONS DEFINED ON THE INTEGERS

ALBERTO CABADA AND JOSÉ ÁNGEL CID

ABSTRACT. This paper is devoted to proving the existence of at least one solution of the
following boundary value problem{

∆(Φ(∆u(k))) = f (k +1,u(k),u(k +1),u(k +2)) on Z,
u(−∞) =−1, u(+∞) = 1,

where the function Φ is a homeomorphism from the finite interval (−a,a) onto R.

1. INTRODUCTION AND PRELIMINARY RESULTS

The study of difference equations represents a very important field in mathematical
research. Different mathematical models coupled with the basic theory of this type of
equation can be found in the classical monograph by S. Goldberg [18] and in the more
recent books by V. Lakshmikantham and D. Trigiante [19] and S. Elaydi [16]. The study
of the existence of solutions for first and second order difference equations coupled with
different kinds of boundary value conditions can be found in [1, 2, 3, 4, 8, 11, 13, 22],
among others.

In [10] we have studied the existence of heteroclinic connections for the differential
equation {

(Φ(u′(t)))′ = f (t,u(t),u′(t)), a.e. on R,
u(−∞) =−1, u(+∞) = 1.

(1)

where Φ : (−a,a)→ R is an increasing homeomorphism with Φ(0) = 0. In this case, the
operator Φ is called singular in the terminology introduced by Bereanu and Mawhin [5]
and its model is the relativistic operator Φ(s) = s√

1−s2
for s ∈ (−1,1). Problem (1) with

an increasing homeomorphism Φ : R→ R has been studied in [7]. In this case, when
Φ is the identity, the problem is motivated by the search for traveling wave solutions for
reaction-diffusion equations [1, 21]. On the other hand, when Φ(s) = |s|p−2s, p > 1, we
obtain the one-dimensional p-laplacian to which many papers have been devoted (see for
instance [14, 17, 23] and references therein). Recently, this study has also been developed
for difference equations in [6, 9, 12].

In this paper we deal with the discrete version of the problem (1), that is

∆(Φ(∆u(k))) = f (k +1,u(k),u(k +1),u(k +2)), on Z, (2)
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u(−∞) =−1, u(+∞) = 1. (3)

In order to prove the existence of a solution we firstly deduce an analogous result to
[5, Corollary 1] for discrete problems, namely, the existence of solution for the singu-
lar Dirichlet discrete problem in a finite interval for each arbitrary continuous function. By
using such a property, we construct a suitable sequence of functions that converges to a
solution of our problem.

In the sequel we assume the following:
(h0) Φ : (−a,a)→ R is an increasing homeomorphism with 0 < a < +∞ (i.e., Φ is

singular).
(f0) f : Z×R3→ R is continuous and satisfies the symmetry condition

f (k,x,y,z) =− f (−k,−z,−y,−x) for all k ∈ Z and (x,y,z) ∈ R3.

(f1) f (k,x,1,z) = 0 = f (k,x,−1,z) for all k ∈ Z and (x,z) ∈ R2.
(f2) f (k,x,y,z) < 0 for all k ∈ {1,2, . . .} and max{|x|, |y|, |z|}< 1. ( Moreover for

every compact set K ⊂ (0,1)3, there exists κ ∈ N and hK : {κ,κ + 1, . . .} → R
such that

f (k,x,y,z)≤ hK(k) for all k ≥ κ and (x,y,z) ∈ K,

and
+∞

∑
s=κ

hK(s) =−∞.

A solution of (2) – (3) is a function u : Z→ R such that ∆u(k) ∈ (−a,a) for all k ∈ Z
and u satisfies the difference equation (2) coupled with the boundary conditions (3).

We shall approximate problem (2)–(3) by problems defined on finite sets. We first prove
the uniqueness of solution of the following equation:

∆(Φ(∆u(k))) = g(k), for all k ∈ Jn ≡ {0, . . . ,n−2}, u(0) = u(n) = 0. (4)

Lemma 1.1. Suppose that Φ : (−a,a)→ R satisfies (h0). Then, for all g : Jn → R the
Dirichlet problem (4) has a unique solution. (Notice that in particular ‖∆u‖∞ < a).

Proof. By direct computation, one can verify that every solution of Problem (4) satisfies
the following equality

ug(k) =
k−1

∑
j=0

Φ
−1

(
τg +

j−1

∑
s=0

g(s)

)
, for all k ∈ In ≡ {0, . . . ,n}, (5)

τg being a solution of the following expression

Fg(τ) :=
n−1

∑
j=0

Φ
−1

(
τ +

j−1

∑
s=0

g(s)

)
= 0. (6)

The fact that the function Fg : R→R has a unique real root is deduced from the follow-
ing facts:

(1) The continuity of Φ−1 implies the continuity of function Fg.
(2) Since Φ−1 is strictly increasing the same holds for function Fg.
(3) lim

τ→+∞
Fg(τ) = na > 0.

(4) lim
τ→−∞

Fg(τ) =−na < 0.
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It is obvious that the uniqueness of constant τg is equivalent to the uniqueness of the solu-
tion ug. �

Now we are in a position to prove the analogous result for discrete equations proved by
Bereanu and Mawhin in [5, Corollary 1]. The result is the following:

Theorem 1.2. Suppose that Φ : (−a,a)→ R satisfies (h0). Then, for all continuous func-
tions f : Jn×R3→ R the Dirichlet problem

∆(Φ(∆u(k))) = f (k +1,u(k),u(k +1),u(k +2)), k ∈ Jn, u(0) = u(n) = 0, (7)

has at least one solution. Moreover, any solution of problem (7) satisfies that ‖∆u‖∞ < a.

Proof. Let T : Rn+1→ Rn+1 defined as

T u(k) =
k−1

∑
j=0

Φ
−1

(
τu +

j−1

∑
s=0

f (s+1,u(s),u(s+1),u(s+2))

)
, k ∈ In, (8)

with τu the unique solution of the following expression

gu(τ) :=
n−1

∑
j=0

Φ
−1

(
τ +

j−1

∑
s=0

f (s+1,u(s),u(s+1),u(s+2))

)
= 0. (9)

From Lemma 1.1 we know that operator T is well defined and that the fixed points of
operator T are the solutions of problem (7).

First we prove that operator T is continuous: suppose um→ u in Rn+1 and let τm be the
corresponding value for um given by (9) and τu associated to u. Let us see that lim

m→∞
τm = τu.

By construction of τm and τu we have that for all m ∈ N:

0 =
n−1

∑
j=0

Φ
−1

(
τu +

j−1

∑
s=0

f (s+1,u(s),u(s+1),u(s+2))

)
(10)

=
n−1

∑
j=0

Φ
−1

(
τm +

j−1

∑
s=0

f (s+1,um(s),um(s+1),um(s+2))

)
.

Since {um} is a convergent sequence to u we have that

{(k +1,um(k),um(k +1),um(k +2)), m ∈ N}∪{(k +1,u(k),u(k +1),u(k +2))}
is a compact set in Jn×R3. As consequence, { f (k + 1,um(k),um(k + 1),um(k + 2))}m∈N
is a bounded sequence in Rn+1 and, from (10) the sequence {τm} is bounded too, and
then we conclude that there exists a subsequence {τmk} converging to a real number γ =
limsup{τm}.

Thus, from the continuity of Φ−1 and f , we arrive at
n−1

∑
j=0

Φ
−1

(
τu +

j−1

∑
s=0

f (s+1,u(s),u(s+1),u(s+2))

)
=

n−1

∑
j=0

Φ
−1

(
γ +

j−1

∑
s=0

f (s+1,u(s),u(s+1),u(s+2))

)
,

and since Φ−1 is a strictly increasing function, we conclude that τu = γ .
Analogously, we verify that τu = liminf{τm}.
Now, by the continuity of f it follows that

lim
m→∞

T um(k) = T u(k) for all k ∈ In,
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which is equivalent to say that T is a continuous operator in Rn+1.
Finally, it is clear that ‖Tu‖∞ ≤ na for each u ∈ Rn+1 and then Brouwer fixed point

theorem (see [20]) ensures the existence of at least one fixed point of the operator T and,
as a consequence, the existence of at least one solution of problem (7).

Notice that, by using expression (8), we have that for all k ∈ In that

∆u(k) = Φ
−1

(
τu +

j−1

∑
s=0

f (s+1,u(s),u(s+1),u(s+2))

)
∈ (−a,a).

�

2. MAIN RESULT

Next we prove the solvability of the singular Φ–laplacian problem (2)–(3).

Theorem 2.1. If conditions (h0), (f0), (f1) and (f2) hold then problem (2)–(3) has an odd
increasing solution u : Z→ R.

Proof. By the symmetry condition ( f 0) it is enough to prove the existence of a solution
u : N→ R of (2) satisfying u(0) = 0 and lim

k→∞
u(k) = 1, since its odd extension solves

(2)–(3).

Claim 1. For each n ∈ N the Dirichlet boundary value problem

∆(Φ(∆u(k))) = f (k +1,u(k),u(k +1),u(k +2)), k ∈ Jn, u(0) = u(n) = 0, (11)

has a solution un : In→ R satisfying 0≤ un(k)≤ 1 and ‖∆un‖∞ < a.

Let f̃ : N×R3→ R be defined as

f̃ (k,x,y,z) =
{

f (k,x,y,z), if −1≤ y≤ 1
0, in other case.

It is clear, from condition ( f 1), that f̃ is a continuous function. On the other hand, for
each n ∈ N the modified problem

∆(Φ(∆u(k))) = f̃ ((k +1,u(k),u(k +1),u(k +2)), u(0) = 0 = u(n),

has by Theorem 1.2 a solution un : In→ R with ‖∆un‖∞ < a.
If there is k0 ∈ {1, . . . ,n−1} such that u(k0) > 1 then, from the definition of f̃ , we arrive

at
∆u(k0−1) = ∆u(k0).

So, by recurrence, we deduce that if ∆u(k0) ≥ 0 then u(k) ≥ u(k0) > 1 for all k ∈
{k0, . . . ,n}. In case ∆u(k0)< 0 holds we deduce that u(k)≥ u(k0)> 1 for all k∈{0, . . . ,k0}.
In both cases we attain a contradiction with un(0) = 0 = un(n).

Analogously, we deduce that un(k)≥−1 for all k ∈ In and then un is a solution of (11).
On the other hand, if ∆u(0) < 0 condition ( f 2) implies that un(k) < 0 for all k ∈ In,

which is again a contradiction. Therefore 0≤ un(k)≤ 1.

Claim 2. There exists a bounded nondecreasing solution u : N→R of (2) such that u(0) =
0 and 0≤ u(k)≤ 1.
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Since un is uniformly bounded, it is easy to prove that a subsequence of un converges
uniformly on finite subsets to a solution u : N→ R of (2).

Clearly u(0) = 0 and 0≤ u(k)≤ 1 for all k ∈ N. As consequence of condition ( f 2) we
have that ∆(Φ(∆u(k)))≤ 0, i. e., ∆u is a nonincreasing function.

If there is k0 ∈ N such that ∆u(k0) < 0 then we deduce that ∆u(k)≤ ∆u(k0) < 0 for all
k≥ k0 and consequently lim

k→∞
u(k) =−∞, a contradiction. Thus ∆u(k)≥ 0 for all k≥ 0 and

then u is nondecreasing in N.

Claim 3. lim
k→+∞

∆u(k) = 0.

Since ∆u is decreasing there exists lim
k→+∞

∆u(k) ∈ R∪{−∞}. But as u is bounded, we

deduce that lim
k→+∞

∆u(k) = 0.

Claim 4. lim
k→+∞

u(k) = 1.

Since u is nondecreasing and bounded there exists lim
k→+∞

u(k) = l ∈ (0,1]. Suppose that

l < 1. From ( f 2) and the facts that 0 ≤ u(k) ≤ l < 1 and lim
k→+∞

∆u(k) = 0, it follows that

there exists a related κ > 0 for which 0 < ∆u(κ) < 1 and a hK (for some suitable compact
set K ⊂ (0,1)3) such that

∆(Φ(∆u(k))) = f (k +1,u(k),u(k +1),u(k +2))≤ hK(k +1) for all k ≥ κ,

and
∞

∑
s=κ+1

hK(s) =−∞.

But in this case
lim
k→∞

Φ(∆u(k)) =−∞

and then
lim
k→∞

∆u(k) =−a < 0,

which is a contradiction. Thus l = 1 and the proof finishes. �

Example 2.2. Let m, n, p ∈ N be given. Consider the problem ∆

(
∆u(k)√

1−(∆u(k))2

)
= k2 l+1 (u(k))2m+1 (u(k)2 p−1)n (u(k +2))2m+1, on Z,

u(−∞) =−1, u(+∞) = 1,

where Φ(s) = s√
1−s2

for all s ∈ (−1,1) and f (k,x,y,z) = k2 l+1 x2m+1 (y2 p−1)n z2m+1.

Clearly conditions of Theorem 2.1 are fulfilled and so its solvability is guaranteed.
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UNIVERSITY OF JAÉN, DEPARTMENT OF MATHEMATICS, CAMPUS LAS LAGUNILLAS, 23071 JAÉN,
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