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Abstract. We deal with the existence of nonnegative and nontrivial solutions T–periodic
solutions for the equation x′′ = r(t)xα − s(t)xβ where r and s are continous T–periodic
functions and 0 < α < β < 1. This equation has been studied in connection with the
valveless pumping phenomenon and we will take advantage of its variational structure in
order to guarantee its solvability by means of the mountain pass theorem of Ambrosetti and
Rabinowitz.
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1. Introduction

The second order periodic boundary value problem

(1)

{
x′′(t) + ax′(t) = r(t)xα(t)− s(t)xβ(t), t ∈ [0, T ],
x(0) = x(T ), x′(0) = x′(T ),

where T > 0, a ≥ 0, r, s ∈ C(R/T,R) and 0 < α < β < 1, has been firstly studied in [6] in
connection with a singular BVP arising as a model for a valveless pumping effect in a simple
pipe-tank configuration (see [10] and also [13, Chapter 8] for a nice review of this remarkable
phenomenon). Later some other existence results for problem (1) were obtained by means
of topological methods, see [4, 5, 13].

The friction term ax′ appears in (1) reflecting Poiseuille’s law in the original pipe-tank
model. On the other hand, the case a = 0 is an idealization but not meaningless from the
physical (or the mathematical) point of view, as has already been pointed out in [6, Remark
1.4]. Recently, this frictionless case

(2)

{
x′′(t) = r(t)xα(t)− s(t)xβ(t), t ∈ [0, T ],
x(0) = x(T ), x′(0) = x′(T ),

where
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(H) T > 0, r, s ∈ C(R/T,R) and 0 < α < β < 1,

has been studied in [14] by means of the lower/upper solution technique and the averaging
method, obtaining in this way sufficient conditions for the existence of positive T -periodic
solutions and also for its stability in combination with the Moser twist theorem.

Our aim in this note is to exploit the variational structure of (2) to obtain the existence
of a nontrivial nonnegative solution which it is a complementary result to those in [14]. In
particular, for positive r and s our main result implies the “universal” solvability of (2)
for every 0 < α < β < 1 (compare for instance with [14, Theorem 3.2]). Clearly, x ≡ 0
is a nonnegative solution of (2) and our main tool to show that it also exists a nontrivial
solution will be the celebrated Mountain Pass Theorem by Ambrosetti and Rabinowitz which
we recall for the convenience of the reader.

Theorem 1.1. [9, Theorem 6.4.24] Let X be a Banach space and let J ∈ C1(X,R), e ∈ X
and R > 0 such that ‖e‖ > R and

inf
x∈X,‖x‖=R

J(x) > J(0) ≥ J(e).

Suppose, moreover, that J satisfies the Palais-Smale condition at the level

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

where

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e},
that is:

(PS)c Any sequence {xn}∞n=1 such that J(xn) → c and J ′(xn) → 0 has a convergent subse-
quence.

Then c is a critical value of J , that is, there exists x ∈ X such that J(x) = c and J ′(x) = 0.

The paper is organized as follows: in Section 2 we analyze the autonomous version of (2).
This will allow us to obtain a picture of what is going on that will be useful to deal in Section
3 with the general case by means of a variational method.

In the sequel, for a continuous function h on [0, T ] we shall denote its minimum by h∗, its

maximum by h∗ and its mean value by h̄ =
1

T

∫ T

0

h(s)ds.

2. The autonomous case

In order to gain insight into problem (2) we shall consider in this section the problem with
constant functions r and s, that is, we deal with

(3)

{
x′′(t) = rxα(t)− sxβ(t), t ∈ [0, T ],
x(0) = x(T ), x′(0) = x′(T ),

where r, s > 0 and 0 < α < β < 1. Since the equation in (3) is conservative it admits the
energy integral

(4)
x′2

2
+ V (x) = c,
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Figure 1. Graph of the potential V for the values r = 12, s = 8, α = 1
2

and

β = 3
4
.

where the potential is given by

V (x) = −r x
α+1

α + 1
+ s

xβ+1

β + 1
, x ≥ 0.

The potential V attains its absolute minimum at x̄ =
(r
s

) 1
β−α

and for c ∈ (V (x̄), 0]

the equation V (x) = c has exactly two solutions. So, V exhibits a “potential well” and
provides the following information about the orbits in the (x, x′) phase-plane: the only
positive equilibrium, namely x̄, is a center surrounded by closed orbits. For the energy level
c ∈ (V (x̄), 0) the orbit of the corresponding periodic solution xc(t) of (3) crosses the x-axis
at points (Ac, 0) and (Bc, 0) and Ac ≤ xc(t) ≤ Bc for all t ∈ R, where 0 < Ac < x̄ < Bc are
the solutions of V (Ac) = V (Bc) = c. The minimal period p(c) of xc is given by the formula

(5) p(c) =
√

2

∫ Bc

Ac

1√
c− V (x)

dx.

By linearization at x̄, it is easy to see that

(6) lim
c→V (x̄)

p(c) =
2π√
V ′′(x̄)

= 2π

√√√√ r
1−β
β−α

(β − α)s
1−α
β−α

.

On the other hand, letting B0 denote the positive solution of the equation V (x) = 0, it
turns out that the orbit through the initial condition (B0, 0) reaches the origin in finite time,
therefore defining another periodic solution with period

(7) p(0) =
√

2

∫ ( r(β+1)
s(α+1))

1
β−α

0

dx√
r x

α+1

α+1
− sxβ+1

β+1

Since V ′ is not regular at x = 0 it is not clear whether p is continuous at c = 0. We prove
this is indeed true in the following result.

Lemma 2.1. The period function p is continuous in [V (x̄), 0].
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Proof. Let us fix 0 < x̃ < x̄ and split∫ Bc

Ac

1√
c− V (x)

dx =

∫ x̃

Ac

1√
c− V (x)

dx+

∫ Bc

x̃

1√
c− V (x)

dx.

Having into account known results ([11], Prop. 3.1.2), it suffices to prove that

φ(c) =

∫ x̃

Ac

1√
c− V (x)

dx

is continuous at c = 0. Letting ε = |c| and W = |V |, we have to show that

(8) lim
ε→0+

ε

∫ x̃

A−ε

dx

W (x)
√
W (x)− ε+ (W (x)− ε)

√
W (x)

= 0

With the change of variable W (x) = εt, we obtain
(9)∫ x̃

A−ε

dx

W (x)
√
W (x)− ε+ (W (x)− ε)

√
W (x)

=
1√
ε

∫ W (x̃)/ε

1

dt

(t
√
t− 1 + (t− 1)

√
t)W ′(W−1(εt))

Let k = α+1. Since the function z 7→ W ′(W−1(z))

z1−1/k
is bounded away from 0 for z ∈]0,W (x̃)],

we may write

(10) W ′(W−1(εt)) = ε1−1/kθ(ε, t)

where θ is bounded away from 0 for t ∈]1,W (x̃)/ε] uniformly with respect to ε > 0. From

(8)-(9)-(10) and the fact that the integral

∫ +∞

1

dt

t
√
t− 1 + (t− 1)

√
t

converges, it follows

that

ε

∫ x̃

A−ε

dx

W (x)
√
W (x)− ε+ (W (x)− ε)

√
W (x)

= O(ε
1
k
− 1

2 )

as ε→ 0+. Since k < 2 we are done.
�

So the analysis of the simple autonomous problem (3) lead us to the following interesting
observations:

• Multiplicity: for every period T > 0, problem (3) always has the constant nontrivial
solution x̄ and moreover for the periods Tc := p(c), c ∈ [V (x̄), 0] that constant
solution coexists with another non constant Tc-periodic solution, namely xc. To our
knowledge this is the first appearance of a multiplicity result related to (2) .

• Homoclinics: the orbit of (3) trough (B0, 0) may be seen as a homoclinic solution
connecting (0, 0) to itself in a finite time T̃ = p(0) (see e.g. [7, 8, 15] for other settings
where this phenomenon appears). Therefore the homoclinic can be continued as 0 in
an interval of arbitrary length and then repeated periodically (note that this situation
is possible only because (0, 0) is a point of non-uniqueness for (3)). In this way, for
each T ≥ T̃ there exists a non-constant and nonnegative solution x(t) of (3) that
vanishes at some points.
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Figure 2. Phase plane for (3) with the values r = 12, s = 8, α = 1
2

and β = 3
4
.

Remark 2.1. The study of the properties of the period function p is far from trivial and it
has been the subject of a great ammount of research in last decades, see [1, 2, 3, 12] and the
references therein.

Using the same notation as in [3, Corollary 2.6] we have that in problem (3)

∇ =
(r
s

) 4−2β
α−β

s2(α− β)2
(
2α2 + α(7β − 1) + (β − 1)(2β + 1)

)
.

Now, if we take β = 1+α
2

we obtain

sgn(∇) = sgn(6α2 + 3α− 1),

and then we are able to conclude (see also [1, Example 2]) that:

• For 0 < α < 0.228714 and β = 1+α
2

the function p is decreasing on some interval
(V (x̄), V (x̄) + δ1) with δ1 > 0.

• For 0.228714 < α < 1 and β = 1+α
2

the function p is increasing on some interval
(V (x̄), V (x̄) + δ2) with δ2 > 0.

3. The non-autonomous case

Let us introduce the following modified problem

(11)

{
x′′(t) = r(t)|x(t)|α−1x(t)− s(t)x+(t)β, t ∈ [0, T ],
x(0) = x(T ), x′(0) = x′(T ).
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Notice that a nonnegative solution of (11) is also a solution of (2) and that the solutions of
(11) correspond to the critical points of the functional J : H1

T → R given by

(12) J(x) =

∫ T

0

(
x′(t)2

2
+ r(t)

|x(t)|α+1

α + 1
− s(t)x+(t)β+1

β + 1

)
dt,

where
H1
T = {x ∈ AC[0, T ] : x′ ∈ L2[0, T ], x(0) = x(T )}

is a Hilbert space with the inner product

(x, y)H1
T

=

∫ T

0

x(t)y(t)dt+

∫ T

0

x′(t)y′(t)dt.

Clearly, J ∈ C1(H1
T ,R) and for each x, v ∈ H1

T we have

(13) J ′(x)v =

∫ T

0

(
x′(t)v′(t) + r(t)|x(t)|α−1x(t)v(t)− s(t)x+(t)βv(t)

)
dt.

Our next aim is to show the existence of another critical point of J , different from the
trivial one, by means of Theorem 1.1.

Theorem 3.1. If 0 < α < β < 1, r∗ > 0 and s∗ > 0 then the functional J given by (12) has
a nontrivial critical point in H1

T .

Proof. A word about notation is in order: in the sequel K shall denote a positive constant
(K > 0) that can change from time to time and whose exact value is not relevant for our
computations.

Taking into account that

r(t)
|x(t)|α+1

α + 1
−s(t)x+(t)β+1 ≥ r∗

|x(t)|α+1

α + 1
−s∗x+(t)β+1 = r∗

|x(t)|α+1

α + 1

(
1− s∗α + 1

r∗
x+(t)β−α

)
,

and 0 < α < β < 1 we have that for ‖x‖∞ small enough

r(t)
|x(t)|α+1

α + 1
− s(t)x+(t)β+1 ≥ K |x(t)|α+1 ≥ K |x(t)|2.

Then, from the continuous embedding of H1
T into C[0, T ] the following property holds:

(14) There exists R1 > 0 such that if ‖x‖H1
T
≤ R1 then J(x) ≥ K ‖x‖2

H1
T

Since J(0) = 0 it is clear from (14) that x ≡ 0 is a strict local minimum of J . On the
other hand, if c ∈ R, c > 0, then

Jc =
T r̄

α + 1
cα+1 − T s̄cβ+1,

so taking into account that α < β and s̄ > 0 we have

(15) lim
c→+∞

Jc = −∞.

From (14) and (15) it is clear that J exhibits a “mountain pass” geometry, that is, we
have proved:

Claim 1.- There exist R > 0 and δ > 0 such that if ‖x‖H1
T

= R then J(x) ≥ δ.

Claim 2.- There exists e ∈ R, e > R, such that J(e) < 0.
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So, in order to get a nontrivial critical point of J it remains to verify the Palais-Smale
condition, providing in this way the necessary compactness.
Claim 3.- (PS) If {xn}∞n=1 ⊂ H1

T is such that {J(xn)}∞n=1 is bounded and J ′(xn) → 0 then
{xn}∞n=1 has a convergent subsequence.

Let us write xn = wn + hn where
∫ T

0
wn(t)dt = 0 and hn ∈ R. By (13) we have

(16) J ′(xn)wn =

∫ T

0

(
w′n(t)2 + r(t)|xn(t)|α−1xn(t)wn(t)− s(t)xn+(t)βwn(t)

)
dt,

and by assumption

(17) |J ′(xn)wn| ≤ εn‖wn‖H1
T

with εn → 0.

On the other hand,

|r(t)|xn(t)|α−1xn(t)wn(t)| ≤ r∗|xn(t)|α|wn(t)| ≤ r∗|wn(t) + hn|α|wn(t)|

≤ K
(
|wn(t)|α+1 + |hn|α|wn(t)|

)
≤ ε|wn(t)|2 +K

(
|wn(t)|α+1 + |hn|2α

)
,

where we have used the inequality |x + y|α ≤ K(|x|α + |y|α) for x, y ∈ R (the constant
depending only on α) and Young’s inequality with ε. Now, by using Holder’s inequality∣∣∣∣∫ T

0

r(t)|xn(t)|α−1xn(t)wn(t)dt

∣∣∣∣ ≤ ε‖wn‖2
2 +K(‖wn‖α+1

2 + |hn|2α),

so

(18) − ε‖wn‖2
2 −K(‖wn‖α+1

2 + |hn|2α) ≤
∫ T

0

r(t)|xn(t)|α−1xn(t)wn(t)dt.

In a similar way

(19) − ε‖wn‖2
2 −K(‖wn‖β+1

2 + |hn|2β) ≤ −
∫ T

0

s(t)xn+(t)βwn(t)dt.

From (16), (17), (18) and (19) it follows that

(20) ‖w′n‖2
2 − 2ε‖wn‖2

2 −K(‖wn‖α+1
2 + ‖wn‖β+1

2 + |hn|2α + |hn|2β) ≤ εn‖wn‖H1
T
,

and then

(21) ‖wn‖2
∞ ≤ K(‖wn‖α+1

2 + ‖wn‖β+1
2 + |hn|2α + |hn|2β).

If hn → +∞ then from (20) we deduce that xn → +∞ uniformly and in that case we obtain
the following contradiction

J ′(xn)1 =

∫ T

0

(
r(t)|xn(t)|α−1xn(t)− s(t)xn+(t)β

)
dt→ −∞.

If hn → −∞ we get a contradiction in an analogous way, so we can suppose that |hn| is
bounded. Then by (20) and (21) it follows that {wn} is bounded in H1

T which implies that
{xn} is also bounded in H1

T . Then, up to a subsequence, {xn} converges weakly in H1
T (and

uniformly on [0, T ]) to some x ∈ H1
T . Consequently

lim
n→∞

J ′(x)(x− xn)− J ′(xn)(x− xn) = 0.

7



Setting F (t, x) = r(t)|x|α−1x− s(t)xβ+ and taking into account that

J ′(x)(x−xn)−J ′(xn)(x−xn) =

∫ T

0

(x′(t)−x′n(t))2 +(F (t, x(t))−F (t, xn(t)))(x(t)−xn(t))dt,

and

lim
n→∞

∫ T

0

(F (t, x(t)− F (t, xn(t)))(x(t)− xn(t))dt = 0,

we have

lim
n→∞

∫ T

0

(x′(t)− x′n(t))2dt = 0,

and therefore xn → x in H1
T . �

As consequence of the previous theorem we obtain our main result which is complementary
to [14, Theorem 3.2 and Corollary 1].

Theorem 3.2. If 0 < α < β < 1, r∗ > 0 and s∗ > 0 then problem (2) has a nontrivial
solution such that x(t) ≥ 0 for all t ∈ [0, T ].

Proof. From Theorem 3.1 it follows the existence of a nontrivial critical point x of J which,
equivalently, is a solution of the modified problem (11). If we suppose that

x(t0) = min
t∈[0,T ]

x(t) < 0,

then we get x′′(t0) = r(t0)|x(t0)|α−1x(t0) < 0, a contradiction. Hence, x(t) ≥ 0 for all
t ∈ [0, T ] and then it is also a nontrivial nonnegative solution of problem (2). �

Remark 3.1. The condition r∗ > 0 in Theorem 3.2 is not necessary in order to get a positive
solution for problem (2) as the following example, taken from [5], shows: let us define

r(t) = 6.6− 5.7 cos(t)− 9 cos2(t) and s(t) = 0.3.

Then r∗ = r(0) = −8.1 < 0 but it is easy to check that x(t) = (2 + cos(t))3 > 0 is a solution
of the problem

(22)

{
x′′(t) = r(t)x1/3(t)− s(t)x2/3(t), t ∈ [0, 2π],
x(0) = x(2π), x′(0) = x′(2π).

So it would be interesting to remove the assumption r∗ > 0, but our approach seems not work
whenever r∗ ≤ 0.

In the following result we provide some “a priori” estimates for the non-trivial solutions
of problem (2), that could be useful to localize the solutions given by Theorem 3.2.

Lemma 3.3. Let x 6≡ 0 be a solution of problem (2). If α < β, r∗ > 0 and s∗ > 0 then the
following claims hold:

(i) ‖x‖∞ ≥
(r∗
s∗

) 1
β−α

.

(ii) ‖x′‖∞ ≤ s∗ s
− β
β−α
∗

∫ T

0

r(t)
β

β−α .

8



Proof. Let t0 ∈ [0, T ] such that x(t0) = ‖x‖∞ > 0. Then

x′′(t0) = r(t0)xα(t0)− s(t0)xβ(t0) ≤ 0.

Hence,

r∗x
α(t0) ≤ s∗xβ(t0),

and claim (i) follows.
To prove (ii) take into account that for all t ∈ [0, T ]

x′(t) = x′(t0) +

∫ t

t0

x′′(τ)dτ =

∫ t

t0

r(τ)xα(τ)− s(τ)xβ(τ)dτ ≤
∫ t

t0

r(τ)xα(τ)dτ,

and hence

(23) ‖x′‖∞ ≤
∫ T

0

r(τ)xα(τ)dτ.

On the other hand, integrating the equation of problem (2) and taking into account the
boundary conditions we have

(24)

∫ T

0

r(τ)xα(τ)dτ =

∫ T

0

s(τ)xβ(τ)dτ.

From (24) and Hölder’s inequality it follows

s∗

∫ T

0

xβ(τ)dτ ≤
∫ T

0

r(τ)xα(τ)dτ ≤ ‖r‖ β
β−α

(∫ T

0

xβ(τ)dτ

)α
β

,

and therefore

(25)

∫ T

0

xβ(τ)dτ ≤

(‖r‖ β
β−α

s∗

) β
β−α

.

Now, by using (24) and (25) we arrive at

∫ T

0

r(τ)xα(τ)dτ ≤ s∗
∫ T

0

xβ(τ)dτ ≤ s∗

(‖r‖ β
β−α

s∗

) β
β−α

,

which together with (23) implies (ii).
�

Remark 3.2. The a priori estimate (i) in Lemma 3.3 is sharp as the phase-plane analysis
of the autonomous problem (3), given in Section 2, shows.

Furthermore, for problem (3) the conservation of the energy implies easily the following
relation between the maximum norms of x and x′,

‖x′‖∞ =
√

2(V (‖x‖∞)− V (x̄)).
9
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[6] J. A. Cid, G. Propst and M. Tvrdý, On the pumping effect in a pipe/tank flow configuration with

friction, Phys. D 273-274 (2014) 28-33.
[7] I. Coelho and L. Sanchez, Travelling wave profiles in some models with nonlinear diffusion, Appl. Math.

Comput. 235 (2014), 469-481.
[8] A. Gavioli and L. Sanchez, Positive homoclinic solutions to some Schrödinger type equations, Differential

Integral Equations 29 (2016), 665-682.
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