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We deal with the existence and multiplicity of solutions for the periodic boundary value problem
x

′′
(t) + a(t)x(t) = λg(t)f(x) + c(t), x(0) = x(T), x′(0) = x′(T), where λ is a positive parameter.

The function f : (0,∞) → (0,∞) is allowed to be singular, and the related Green’s function is
nonnegative and can vanish at some points.

1. Introduction and Preliminaries

In the recent paper [1], the authors obtain existence, multiplicity, and nonexistence results for
the periodic problem

x′′(t) − k2x(t) = λ g(t)f(x), x(0) = x(2π), x′(0) = x′(2π), (1.1)

depending on the parameter λ > 0. Although not explicitly mentioned in [1], we point out
the important fact that the related Green’s function of (1.1) is strictly negative for all k > 0.

The aim of this paper is to give complementary results to those of [1] for the case of a
nonnegative related Green’s function. In particular, we will deal with problem

x′′(t) + a(t)x(t) = λg(t)f(x) + c(t), x(0) = x(T), x′(0) = x′(T), (1.2)
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assuming that its Green’s function is nonnegative (for instance, if a(t) = k2, this means 0 <
k ≤ π/T). Moreover, in order to give wider applicable results, we will also allow f(x) to be
singular at x = 0 (the reader may have in mind the model f(x) = 1/xα, for some α > 0).

We note that analogous arguments have been developed in [2] for the fourth-order
discrete equation

u(k + 4) +Mu(k) = λg(k)f(u(k)) + c(k), u(i) = u(T + i), i = 0, . . . , 3. (1.3)

Themain tool used in this paper is Krasnoselskii’s fixed point theorem in a cone, which
is a classical tool extensively used in the related literature (see, for instance, [1, 3–5] and
references therein). We will use cones of the form

K =
{
x ∈ C([0, T], [0,∞)) : ϕ(x) ≥ σ‖x‖

}
, (1.4)

where 0 < σ ≤ 1 is a fixed constant and ϕ : C([0, T], [0,∞)) → [0,∞) is a functional satisfying

(i) ϕ(x + y) ≥ ϕ(x) + ϕ(y) for all x, y ∈ C([0, T], [0,∞)),

(ii) ϕ(λx) = λϕ(x) for all λ > 0 and x ∈ C([0, T], [0,∞)).

In particular, in Section 2, we use the standard choice ϕ(x) = mint∈[0,T]x(t), and in
Section 3, we use ϕ(x) =

∫T
0 x(s)ds, which has been recently introduced in [3].

We say that the linear problem

x′′ + a(t)x = 0, x(0) = x(T), x′(0) = x′(T) (1.5)

is nonresonant when its unique solution is the trivial one. It is well known that if (1.5) is
nonresonant, then the nonhomogeneous problem

x′′ + a(t)x = h(t), a.e. t ∈ [0, T]; x(0) = x(T), x′(0) = x′(T), (1.6)

always has a unique solution which, moreover, can be written as

x(t) =
∫T

0
G(t, s)h(s)ds, (1.7)

where G(t, s) is Green’s function related to (1.5). Thus, defining for each λ > 0 the operator

Tλ : D(Tλ) ≡ {x ∈ C([0, T]) : x(t) > 0∀ t ∈ [0, T]} −→ C([0, T]), (1.8)

given by

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds +

∫T

0
G(t, s)c(s)ds, t ∈ [0, T], (1.9)

we have that x > 0 is a solution of problem (1.2) if and only if x = Tλx.
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Throughout the paper, we will use the following notation:

γ(t) =
∫T

0
G(t, s)c(s)ds,

m = min
t,s∈[0,T]

G(t, s), M = max
t,s∈[0,T]

G(t, s),

f0 = lim
x→ 0+

f(x)
x

, f∞ = lim
x→∞

f(x)
x

.

(1.10)

For a ∈ L1(0, T), we denote by a+ = max{a, 0} its positive part, and for 1 ≤ p ≤ ∞, we
denote by p̂ its conjugate, that is 1/p+1/p̂ = 1. Moreover, for an essentially bounded function
h : [0, T] → R, we define

h∗ = inf ess
t∈[0,T]

h(t), h∗ = sup ess
t∈[0,T]

h(t), (1.11)

and for x ∈ C([0, T]), we will define

‖x‖ = sup
t∈[0,T]

|x(t)|. (1.12)

The following section is devoted to prove the existence, multiplicity, and nonexistence
of solutions of problem (1.2) by assuming that the related Green’s function is strictly positive,
whereas in Section 3, we turn out to the case, where the related Green’s function is non
negative. We point out that in the recent paper [6], the existence of solution for problem
(1.2) with a sign-changing Green’s function is studied, but only considering a regular f and
c(t) ≡ 0.

2. Positive Green’s Function

In this section, we assume the following hypotheses:

(H0) γ∗ > 0 or c(t) ≡ 0,

(H1) problem (1.5) is nonresonant and the corresponding Green’s function G(t, s) is
strictly positive on [0, T] × [0, T],

(H2) g ∈ L1([0, T]), g(t) ≥ 0 for a.e. t ∈ [0, T], and
∫T
0 g(s)ds > 0,

(H3) f : (0,∞) → (0,∞) is continuous,

(H4) c ∈ L1([0, T]).

Notice that condition (H3) allows f to be singular at x = 0. In particular, (H3) is
satisfied when f(x) = 1/xα, α > 0 (the case 0 < α < 1 is called a weak singularity, while α ≥ 1
is called an strong singularity).

On the other hand, it is well known that for constant a(t) ≡ k2, condition (H1) is
equivalent to 0 < k < π/T . For a time-dependent and nonnegative potential a(t), Torres gave
a sharp Lp-criterium [5] based on an antimaximum principle obtained in a previous work by
Torres and Zhang [7]. That criterium has been extended in [8] for sign-changing potentials
with strictly positive average. The obtained result is the following.
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Proposition 2.1 (see [8, Theorem 3.2]). Define

K(α, T) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2π
αT1+2/α

(
2

2 + α

)1−2/α( Γ(1/α)
Γ(1/2 + 1/α)

)2

, if 1 ≤ α < ∞,

4
T
, if α = ∞,

(2.1)

where Γ is the usual Gamma function.
Assume that a ∈ Lp(0, T) for some 1 ≤ p ≤ ∞,

∫T
0 a(t)dt > 0, and moreover,

‖a+‖p < K
(
2p̂, T

)
. (2.2)

Then, G(t, s) > 0 for all (t, s) ∈ [0, T] × [0, T].

In [9], by studying antimaximum principles for the semilinear equation

(∣∣u′∣∣p−2u′
)′

+ a(t)
(
|u|p−2u

)
= h(t), u(0) = u(T), u′(0) = u′(T), (2.3)

the previous result has been extended to the potentials with nonnegative average as follows.

Lemma 2.2 (see [9, Theorem 3.4 and Remark 3.7]). Assume that a ∈ Lp(I) for some p ≥ 1,
∫T
0 a(t)dt ≥ 0, and moreover,

‖a+‖p ≤ K
(
2 p̂, T

)
. (2.4)

Then, G(t, s) > 0 for a. e. (t, s) ∈ I × I.

Zhang constructs in [10] some examples of potentials a(t) for which the related Green’s
function is strictly positive, but (2.2) does not hold. In consequence, the best Sobolev constant
K(2 p̂, T) is not an optimal estimate to ensure the positiveness of Green’s function. For
optimal conditions in order to get maximum or antimaximum principles, expressed using
eigenvalues, Green’s functions, or rotation numbers, the reader is referred to the recent work
of Zhang [11].

Example 2.3. By Proposition 2.1, Hill’s equation

x′′ + a(1 + b cos(t))x = 0, (2.5)

with the periodic boundary conditions

x(0) = x(2π), x′(0) = x′(2π) (2.6)

satisfies (H1), provided that a > 0, and moreover,

‖a(1 + b cos(t))+‖p < K
(
2p̂, 2π

)
, for some p ∈ [1,∞], (2.7)
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Figure 1: Graphic of M(b).

where K is given by (2.1). So, for each b ∈ R, the condition (H1) is fulfilled if

0 < a < M(b) := sup
p∈[1,∞]

{
K
(
2p̂, 2π

)

‖(1 + b cos(t))+‖p

}

. (2.8)

In particular, it is known that M(0) = 1/4 and M(1) = 0.16448 (since the maximum
of K(2p̂, 2π)/‖1 + cos(t)‖p is attained at p ≈ 2.1941, see [10, Example 4.4]). The graphic of
M(b) is showed in Figure 1.

From (H1), it follows that m > 0, and we define the cone

K :=
{
x ∈ C([0, T], [0,∞)) : min

t∈[0,T]
x(t) ≥ σ‖x‖

}
, (2.9)

where

σ = min
{

m

M
,
γ∗
γ∗

}
, if γ∗ > 0 or σ =

m

M
, if c(t) ≡ 0. (2.10)

In both cases, 0 < σ < 1, and for 0 < r < R, we define

Kr,R := {x ∈ K : r ≤ ‖x‖ ≤ R}.
(2.11)

Next, we give sufficient conditions for the solvability of problem (1.2).

Theorem 2.4. Assume that conditions (H0), (H1), (H2), (H3), and (H4) are fulfilled. Then, for
each λ > 0 and 0 < r < R, the operator Tλ : Kr,R → K given by (1.9) is well defined and completely
continuous.
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Moreover, if either

(i) ‖Tλx‖ ≤ ‖x‖ for any x ∈ K with ‖x‖ = r and ‖Tλx‖ ≥ ‖x‖ for any x ∈ K with ‖x‖ = R,
or

(ii) ‖Tλx‖ ≥ ‖x‖ for any x ∈ K with ‖x‖ = r and ‖Tλx‖ ≤ ‖x‖ for any x ∈ K with ‖x‖ = R,

then Tλ has a fixed point inKr,R, which is a positive solution of problem (1.2).

Proof. Note that if x ∈ Kr,R, then 0 < σ r ≤ x(t) ≤ R for all t ∈ [0, T], so Kr,R ⊂ D(Tλ), and
then Tλ : Kr,R → C([0, T]) is well defined. Standard arguments show that Tλ(D(Tλ)) ⊂ K
and that Tλ is completely continuous. Then, from Krasnoselskii’s fixed point theorem (see
[12, p. 148]), it follows the existence of a fixed point for Tλ inKr,R which is, by the definition
of Tλ, a positive solution of problem (1.2).

Before proving the existence and multiplicity results for problem (1.2), we need some
technical lemmas proved in the next subsection.

2.1. Auxiliary Results

Lemma 2.5. Assume that conditions (H0), (H1), (H2), (H3), and (H4) are satisfied. Then, for
each R > γ∗, there exists λ0(R) > 0 such that for every 0 < λ ≤ λ0(R), we have

‖Tλx‖ ≤ ‖x‖ for x ∈ K with ‖x‖ = R. (2.12)

Proof. Fix R > γ∗, and let x ∈ K with ‖x‖ = R. If

0 < λ ≤ λ0(R) :=
R − γ∗

M max
u∈[σR,R]

f(u)
∫T
0 g(s)ds

, (2.13)

then, for all t ∈ [0, T] the following inequalities hold:

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≤ λM max
u∈[σR,R]

f(u)
∫T

0
g(s)ds + γ∗

≤ R = ‖x‖,

(2.14)

and thus ‖Tλx‖ ≤ ‖x‖.

Lemma 2.6. Assume that conditions (H0), (H1), (H2), (H3), and (H4) are fullfiled. Then, for
each r > 0, there exists λ0(r) > 0 such that for every λ ≥ λ0(r), we have

‖Tλx‖ ≥ ‖x‖, for x ∈ K with ‖x‖ = r. (2.15)
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Proof. Fix r > 0, and let x ∈ K with ‖x‖ = r. If

λ ≥ λ0(r) :=
r

m min
u∈[σr,r]

f(u)
∫T
0 g(s)ds

,
(2.16)

then

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≥ λm min
u∈[σR,R]

f(u)
∫T

0
g(s)ds + γ∗

≥ r = ‖x‖,

(2.17)

and thus ‖Tλx‖ ≥ ‖x‖.

Lemma 2.7. Suppose that conditions (H1), (H2), (H3), and (H4) are satisfied and c(t) ≡ 0. Then,
if f0 = 0, there exists r0(λ) > 0 such that for every 0 < r ≤ r0(λ), we have

‖Tλx‖ ≤ ‖x‖, for x ∈ K with ‖x‖ = r. (2.18)

Proof. Since f0 = 0 for ε = ε(λ) = 1/λM
∫T
0 g(s)ds, there exists r0(λ) > 0 such that f(u) ≤ εu

for each 0 < u ≤ r0(λ).
Fix 0 < r ≤ r0(λ), and let x ∈ K with ‖x‖ = r. Then,

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds

≤ λM

∫T

0
g(s)εx(s)ds

≤ λMε‖x‖
∫T

0
g(s)ds

= ‖x‖,

(2.19)

and thus ‖Tλx‖ ≤ ‖x‖.

Lemma 2.8. Assume that hypothesis (H0), (H1), (H2), (H3), and (H4) hold. Then, if f0 = ∞,
there exists r0(λ) > 0 such that for every 0 < r ≤ r0(λ), we have

‖Tλx‖ ≥ ‖x‖, for x ∈ K with ‖x‖ = r. (2.20)

Proof. Since f0 = ∞ for L = L(λ) = 1/λmσ
∫T
0 g(s)ds, there exists r0(λ) > 0 such that f(u) ≥ Lu

for each 0 < u ≤ r0(λ).



8 Abstract and Applied Analysis

Fix 0 < r ≤ r0(λ), and let x ∈ K with ‖x‖ = r. Then,

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≥ λm

∫T

0
g(s)Lx(s)ds + γ∗

≥ λmLσ‖x‖
∫T

0
g(s)ds

= ‖x‖,

(2.21)

and thus ‖Tλx‖ ≥ ‖x‖.

Lemma 2.9. Suppose that conditions (H0), (H1), (H2), (H3), and (H4) are satisfied. Then, if
f∞ = 0 then, there exists R0(λ) > 0 such that for every R ≥ R0(λ), we have

‖Tλx‖ ≤ ‖x‖, for x ∈ K with ‖x‖ = R. (2.22)

Proof. Since f∞ = 0 for ε(λ) = 1/2λM
∫T
0 g(s)ds, there exists R1(λ) > 0 such that f(u) ≤ εu for

each u ≥ R1(λ). We define R0(λ) := max{R1(λ)/σ, 2γ∗}.
Fix R ≥ R0(λ), and let x ∈ K with ‖x‖ = R. Then,

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≤ λM

∫T

0
g(s)εx(s) + γ∗

≤ λMε‖x‖
∫T

0
g(s)ds + γ∗

=
R

2
+ γ∗ ≤ R

2
+
R

2
= R = ‖x‖,

(2.23)

and thus ‖Tλx‖ ≤ ‖x‖.

Lemma 2.10. Assume that (H0), (H1), (H2), (H3), and (H4) are fullfiled. Then, if f∞ = ∞, there
exists R0(λ) > 0 such that for every R ≥ R0(λ), we have

‖Tλx‖ ≥ ‖x‖, for x ∈ K with ‖x‖ = R. (2.24)

Proof. Since f∞ = ∞ for L = L(λ) = 1/λmσ
∫T
0 g(s)ds, there exists R1(λ) > 0 such that f(u) ≥

Lu for each u ≥ R1(λ). We define R0(λ) := R1(λ)/σ.
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Fix R ≥ R0(λ), and let x ∈ K with ‖x‖ = R. Then,

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≥ λm

∫T

0
g(s)Lx(s)ds + γ∗

≥ λmLσ‖x‖
∫T

0
g(s)ds

= ‖x‖,

(2.25)

and thus ‖Tλx‖ ≥ ‖x‖.

In the sequel, we study separately the two different cases considered in condition
(H0); that is, γ∗ > 0 or c(t) ≡ 0.

2.2. The Case γ∗ > 0

Theorem 2.11. Assume that conditions (H1), (H2), (H3), and (H4) are fulfilled. If, moreover,
γ∗ > 0, the following results hold:

(1) there exists λ0 > 0 such that problem (1.2) has a positive solution if 0 < λ < λ0,

(2) if f∞ = 0, then problem (1.2) has a positive solution for every λ > 0,

(3) if f∞ = ∞, then there exists λ0 > 0 such that problem (1.2) has two positive solutions if
0 < λ < λ0,

(4) if f0 > 0 and f∞ > 0, then there exists λ0 > 0 such that problem (1.2) has no positive
solutions if λ > λ0.

Proof. Fix 0 < r < γ∗. Then, for each λ > 0 and x ∈ K with ‖x‖ = r, we have

‖Tλx‖ ≥ Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≥ γ∗ > r = ‖x‖.
(2.26)

Part 1. Fix R > γ∗(≥ γ∗ > r), and take λ0 = λ0(R) given by Lemma 2.5. Then, from
Theorem 2.4 (ii), it follows the existence of a positive solution for problem (1.2)
if 0 < λ < λ0.

Part 2. Fix λ > 0, and take R > max{r, R0(λ)}, where R0(λ) is given by Lemma 2.9. Then,
from Theorem 2.4 (ii), it follows the existence of a positive solution for problem
(1.2).

Part 3. Fix R2 > R1 > γ∗(≥ γ∗ > r), and take λ0 = min{λ0(R1), λ0(R2)}, where λ0(R1) and
λ0(R2) are the given by Lemma 2.5.
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Now, fix 0 < λ < λ0, and take R > max{R2, R0(λ)}, where R0(λ) is given by
Lemma 2.10. Therefore, from Theorem 2.4, it follows the existence of two positive solutions
x1 and x2 for problem (1.2) such that

r ≤ ‖x1‖ ≤ R1 < R2 ≤ ‖x2‖ ≤ R. (2.27)

Part 4. Since f0 > 0 and f∞ > 0, there exists L > 0 such that f(u) ≥ Lu for all u > 0. Define

λ0 :=
1

mσL
∫T
0 g(s)ds

. (2.28)

If for λ > λ0, there exists a positive solution x of problem (1.2), we know that x ∈ D(Tλ)
and, as consequence, x = Tλ(x) ∈ K. Therefore, we deduce the following inequalities:

‖x‖ = ‖Tλx‖ ≥ Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≥ λm

∫T

0
g(s)Lx(s)ds + γ∗

≥ λmLσ‖x‖
∫T

0
g(s)ds

> ‖x‖,

(2.29)

and we attain a contradiction.

Example 2.12. Let us consider the forced Mathieu-Duffing-type equation

x′′ + a(1 + b cos(t))x − λx3 = c(t), (2.30)

which fits into expression (1.2) by defining a(t) = a(1 + b cos(t)), g(t) = 1 and f(x) = x3.
Equation (2.30), with c(t) ≡ 0, was studied in [13], where a sufficient condition for the

existence of a 2π-periodic solution is given. However, since the proof relies in the application
of Schauder’s fixed point theorem in a ball centered at the origin, the trivial solution x(t) ≡ 0
is not excluded. The existence of a nontrivial solution was later obtained by Torres in [5,
Corollary 4.2]. More precisely, Torres proves that if function a(t) > 0 for a.e. t ∈ [0, 2π] and
‖a‖p < K(2p̂, 2π), then the homogeneous problem (c(t) ≡ 0) (2.30) has at least two nontrivial
one-signed 2π-periodic solutions.

In this paper, as a consequence of Example 2.3 and Theorem 2.11, Part 3, we arrive at
the following multiplicity result for the inhomogeneous (c(t)/≡ 0) equation (2.30) with a not
necessarily constant sign function a(t).

Corollary 2.13. If condition (2.8) is satisfied and γ∗ > 0, then there exists λ0 > 0 such that (2.30) has
at least two positive 2π-periodic solutions, provided that 0 < λ < λ0.
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2.3. The Case c(t) ≡ 0

Theorem 2.14. Assume that conditions (H1), (H2), (H3), and (H4) hold. If moreover c(t) ≡ 0 the
following results hold:

(1) if f0 = ∞ or f∞ = ∞, then there exists λ0 > 0 such that problem (1.2) has a positive
solution if 0 < λ < λ0,

(2) if f∞ = 0 then there exists λ0 > 0 such that problem (1.2) has a positive solution for every
λ > λ0,

(3) if f0 = ∞ and f∞ = 0 then problem (1.2) has a positive solution for every λ > 0,

(4) if f0 = ∞ and f∞ = ∞ then there exists λ0 > 0 such that problem (1.2) has two positive
solutions if 0 < λ < λ0,

(5) if f0 = 0 and f∞ = ∞, then problem (1.2) has a positive solution for every λ > 0,

(6) if f0 = 0 and f∞ = 0 then there exists λ0 > 0 such that problem (1.2) has two positive
solutions if λ > λ0,

(7) if f0 > 0 and f∞ > 0, then there exists λ0 > 0 such that problem (1.2) has no positive
solutions if λ > λ0.

Proof of Part 1. Fix R > γ∗ = 0 and take λ0 = λ0(R) > 0 given by Lemma 2.5. In consequence,
for all 0 < λ ≤ λ0(R)we have

‖Tλx‖ ≤ ‖x‖, for x ∈ K with ‖x‖ = R. (2.31)

Now, let 0 < λ < λ0 be fixed, and choose 0 < r < min{R, r0(λ)}, where r0(λ) is given by
Lemma 2.8 when f0 = ∞. In case of f∞ = ∞, we get r > max{R,R0(λ)} > R, with R0(λ) given
by Lemma 2.10. In both situations, we arrive at

‖Tλx‖ ≥ ‖x‖, for x ∈ K with ‖x‖ = r. (2.32)

Thus, Theorem 2.4 implies the existence of a positive solution for problem (1.2).

Part 2. Fix r > 0, and take λ0 = λ0(r) > 0 given by Lemma 2.6. Now, for each λ > λ0, take
R > max{r, R0(λ)}, with R0(λ) given by Lemma 2.9, and apply Theorem 2.4.

Part 3. For each λ > 0, take r0(λ) < R0(λ) given by Lemmas 2.8 and 2.9, respectively, and
apply Theorem 2.4.

Part 4. Fix R2 > R1 > γ∗ = 0, and take λ0 = min{λ0(R1), λ0(R2)} given by Lemma 2.5.
Now, for each 0 < λ < λ0, take r < min{R1, r0(λ)} given by Lemma 2.8 and R >
max{R2, R0(λ)} given by Lemma 2.10. Then, Theorem 2.4 implies the existence of
two positive solutions x1 and x2 for problem (1.2) such that

r ≤ ‖x1‖ ≤ R1 < R2 ≤ ‖x2‖ ≤ R. (2.33)

Part 5. Use Lemmas 2.7 and 2.10 and Theorem 2.4.
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Part 6. Use Lemmas 2.6, 2.7, and 2.9 and Theorem 2.4 twice.

Part 7. The proof follows the same steps as Part 4 in Theorem 2.11.

Remark 2.15. Theorem 2.14 complements [1, Theorem 2.1], since it provides similar results
for the problem x′′ + k2x = λg(t)f(x), with 0 < k < π/T .

Example 2.16. Consider as a model the problem

x′′ + a(1 + b cos(t))x = λ

(
1
xα

+ μ xβ

)
, x(0) = x(2π), x′(0) = x′(2π), (2.34)

where a > 0, b ∈ R and α, β, μ ≥ 0. When b = 1 and μ = 0, (2.34) is the Brillouin-
beam focusing equation which has been widely studied in the literature (see [5, 10, 14] and
references therein). Now, we have the following:

Corollary 2.17. Assume condition (2.8). Then, the following results are satisfied:

(i) if 0 ≤ β < 1, then problem (2.34) has a positive solution for every λ > 0.

(ii) if β = 1 and μ > 0, then there exists λ0 > 0 such that problem (2.34) has a positive solution
for every 0 < λ < λ0, and there exists λ1 > 0 such that the problem has no positive solution
for λ > λ1.

(iii) if β > 1 and μ > 0, then there exists λ0 > 0 such that problem (2.34) has two positive
solutions for every 0 < λ < λ0.

Proof. Condition (2.8) implies that condition (H1) is satisfied. Now, to prove (i), (ii) or (iii) it
is enough to apply Theorem 2.14 Part 3, Part 1 and Part 7 or Part 4, respectively.

3. Nonnegative Green’s Function

In this section instead of conditions (H1) and (H3), we assume

(̃H1) Problem (1.5) is nonresonant, the corresponding Green’s function G(t, s) is
nonnegative on [0, T] × [0, T], and β = mint∈[0,T]

∫T
0 G(t, s)ds > 0,

(̃H3) f : [0,∞) → [0,∞) is continuous, and f(u) > 0 for all u > 0.

Notice that x(t) =
∫T
0 G(t, s) ds is the unique solution of the problem

x′′(t) + a(t)x(t) = 1, x(0) = x(T), x′(0) = x′(T), (3.1)

and then (̃H1) asks for this solution to be strictly positive. On the other hand, assumption
(̃H3) allows us to consider only regular problems. We will discuss to singular problems in
Section 3.1 by means of a truncation technique.

For constant a(t) ≡ k2, condition (̃H1) is equivalent to 0 < k ≤ π/T . For nonconstant
a(t), condition (̃H1) is satisfied provided that Lemma 2.2 holds.

On the other hand, under condition (̃H1), it is allowed that

m = min
t,s∈[0,T]

G(t, s) = 0, (3.2)
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so σ = m/M can be equal to 0, and thus, the arguments used in the previous section do not
work. So, by assuming that γ∗ ≥ 0, let us define

K̃ :=

{

x ∈ C([0, T], [0,∞)) :
∫T

0
x(s)ds ≥ σ̃‖x‖

}

, (3.3)

where σ̃ = min{β/TM,
∫T
0 γ(s)ds/T‖γ‖} if ‖γ‖ > 0 or σ̃ = β/TM if ‖γ‖ = 0. As far as we know,

the cone K̃was introduced in [3].
Clearly, 0 < σ̃ ≤ 1, and for 0 < r < R, we define

K̃r,R :=
{
x ∈ K̃ : r ≤ ‖x‖ ≤ R

}
. (3.4)

Next, we prove the following result similar to Theorem 2.4.

Theorem 3.1. Assume that (H0), (̃H1), (H2), (̃H3), and (H4) hold. Then, for each λ > 0 and
0 < r < R, the operator Tλ : K̃r,R → K̃ given by (1.9) is well defined and completely continuous.

Moreover, if either

(i) ‖Tλx‖ ≤ ‖x‖ for any x ∈ K̃ with ‖x‖ = r and ‖Tλx‖ ≥ ‖x‖ for any x ∈ K̃ with ‖x‖ = R,
or

(ii) ‖Tλx‖ ≥ ‖x‖ for any x ∈ K̃ with ‖x‖ = r and ‖Tλx‖ ≤ ‖x‖ for any x ∈ K̃ with ‖x‖ = R,

then Tλ has a fixed point in K̃r,R, which is a nonnegative solution of problem (1.2).

Proof. If x ∈ C([0, T], [0,∞)) and assuming ‖γ‖ > 0 (the case ‖γ‖ = 0 being analogous), we
obtain

∫T

0
Tλx(t)dt = λ

∫∫T

0
G(t, s)g(s)f(x(s))ds dt +

∫T

0
γ(t)dt

= λ

∫T

0
g(s)f(x(s))

(∫T

0
G(t, s)dt

)

ds +
∫T

0
γ(s)ds

≥ λβ

∫T

0
g(s)f(x(s))ds +

∫T

0
γ(s)ds

= λ
β

TM
TM

∫T

0
g(s)f(x(s))ds +

∫T
0 γ(s)ds

T
∥∥γ
∥∥ T

∥∥γ
∥∥

≥ σ̃

(

λTM

∫T

0
g(s)f(x(s))ds + T

∥∥γ
∥∥
)

≥ σ̃‖Tλx‖.

(3.5)

Thus, Tλ(C([0, T], [0,∞))) ⊂ K̃, and it is standard to show that Tλ is completely continuous.
In consequence, from Krasnoselskii’s fixed point theorem (see [12, p.148]), it follows the
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existence of a fixed point for Tλ in K̃r,R which it is, by the definition of Tλ, a non negative
solution of problem (1.2).

Now, we are going to give sufficient conditions to obtain ‖Tλx‖ ≤ ‖x‖ or ‖Tλx‖ ≥ ‖x‖.
The combination of the next lemmas with Theorem 3.1 will allow us to prove existence and
multiplicity results for problem (1.2).

Lemma 3.2. Suppose that the conditions (H0), (̃H1), (H2), (̃H3), and (H4) are satisfied. Then,
for each R > γ∗, there exists λ0(R) > 0 such that for every 0 < λ ≤ λ0(R), we have

‖Tλx‖ ≤ ‖x‖, for x ∈ K̃ with ‖x‖ = R. (3.6)

Proof. Fix R > γ∗, and let x ∈ K̃ with ‖x‖ = R. If

0 < λ ≤ λ0(R) :=
R − γ∗

M max
u∈[0,R]

f(u)
∫T
0 g(s)ds

, (3.7)

then

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≤ λM max
u∈[0,R]

f(u)
∫T

0
g(s)ds + γ∗

≤ R = ‖x‖,

(3.8)

and thus ‖Tλx‖ ≤ ‖x‖.

Lemma 3.3. Assume that (H̃1), (H2), (H̃3), (H4), and
∫T
0 γ(s)ds > 0 are satisfied. Then, there

exists r0 > 0 such that for each 0 < r < r0, we have

‖Tλx‖ ≥ ‖x‖, for x ∈ K̃ with ‖x‖ = r. (3.9)

Proof. Fix 0 < r < r0 := 1/T
∫T
0 γ(s)ds, and let x ∈ K̃with ‖x‖ = r. Then,

‖Tλx‖ ≥ 1
T

∫T

0
Tλx(t)dt =

λ

T

∫∫T

0
G(t, s)g(s)f(x(s))dsdt +

1
T

∫T

0
γ(t)dt

≥ r0 > r = ‖x‖,
(3.10)

and thus ‖Tλx‖ ≥ ‖x‖.
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Lemma 3.4. Let (H0), (H̃1), (H2), (H̃3), and (H4) be fulfilled. Then, if f∞ = 0, there exists
R0(λ) > 0 such that for every R ≥ R0(λ), we have

‖Tλx‖ ≤ ‖x‖, for x ∈ K̃ with ‖x‖ = R. (3.11)

Proof. Define f̃(u) = max0≤z≤u f(z). Clearly, f̃ is a nondecreasing function on [0,∞);
moreover, since f∞ = 0, it is obvious that

lim
u→∞

f̃(u)
u

= 0. (3.12)

Therefore, we have that for ε(λ) = 1/2λM
∫T
0 g(s)ds, there exists R1(λ) > 0 such that

f̃(u) ≤ εu for each u ≥ R1(λ).
Define R0(λ) := max{R1(λ), 2γ∗}, fix R ≥ R0(λ), and let x ∈ K̃ with ‖x‖ = R. Then

Tλx(t) = λ

∫T

0
G(t, s)g(s)f(x(s))ds + γ(t)

≤ λ

∫T

0
G(t, s)g(s)f̃(‖x‖)ds + γ(t)

≤ λMε‖x‖
∫T

0
g(s)ds + γ∗

=
R

2
+ γ∗ ≤ R

2
+
R

2
= R = ‖x‖,

(3.13)

and thus ‖Tλx‖ ≤ ‖x‖.

Theorem 3.5. Assume (H0), (H̃1), (H2), (H̃3), and (H4). The following results hold:

(1) if
∫T
0 γ(s)ds > 0. then there exists λ0 > 0 such that problem (1.2) has a nonnegative solution

if 0 < λ < λ0,

(2) if
∫T
0 γ(s)ds > 0 and f∞ = 0, then problem (1.2) has a nonnegative solution for every λ > 0.

Proof. The first assertion is a direct consequence of Lemmas 3.2 and 3.3. The second part
follows from Lemmas 3.3 and 3.4

Now, we will impose a strong condition on function g by assuming that g is strictly
positive on the whole interval.

(̃H2) g ∈ L1([0, T]), g(t) ≥ g∗ > 0 for a.e. t ∈ [0, T].



16 Abstract and Applied Analysis

Lemma 3.6. Assume that conditions (H0), (̃H1), (̃H2), (̃H3), and (H4) are satisfied. Then, if
f0 = ∞, there exists r0(λ) > 0 such that for every 0 < r ≤ r0(λ), we have

‖Tλx‖ ≥ ‖x‖, for x ∈ K̃ with ‖x‖ = r. (3.14)

Proof. Since f0 = ∞ for L = L(λ) = T/λβσ̃g∗, there exists r0(λ) > 0 such that f(u) ≥ Lu for
each 0 ≤ u ≤ r0(λ).

Fix 0 < r ≤ r0(λ), and let x ∈ K̃ with ‖x‖ = r. Then,

‖Tλx‖ ≥ 1
T

∫T

0
Tλx(t)dt =

λ

T

∫∫T

0
G(t, s)g(s)f(x(s))dsdt +

1
T

∫T

0
γ(t)dt

≥ λ

T

∫∫T

0
G(t, s)g(s)f(x(s))dt ds

≥ λ

T
βg∗L

∫T

0
x(s)ds

≥ λ

T
βg∗Lσ̃‖x‖

= ‖x‖,

(3.15)

and thus ‖Tλx‖ ≥ ‖x‖.

Now, we are in a position to present the main result of this section.

Theorem 3.7. Suppose that conditions (H0), (H̃1), (H̃2), (H̃3), and (H4) are fulfilled. The
following assertions are satisfied:

(1) if f0 = ∞, then there exists λ0 > 0 such that problem (1.2) has a nonnegative solution if
0 < λ < λ0,

(2) if f0 = ∞ and f∞ = 0, then problem (1.2) has a nonnegative solution for every λ > 0,

(3) if f0 > 0 and f∞ > 0, then there exists λ0 > 0 such that problem (1.2) has no nonnegative
solutions if λ > λ0.

Proof. The first assertion is a direct consequence of Lemmas 3.2 and 3.6. The second part
follows from Lemmas 3.4 and 3.6.

To prove Part 3, by using that f0 > 0 and f∞ > 0, we know that there exists L > 0 such
that f(u) ≥ Lu for all u ≥ 0.

By defining

λ0 :=
T

βσ̃Lg∗
, (3.16)
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we have that if there is any λ > λ0 for which there exists a nonnegative solution x of problem
(1.2), then x = Tλx ∈ K. So, we arrive at the following contradiction:

‖Tλx‖ ≥ 1
T

∫T

0
Tλx(t)dt =

λ

T

∫∫T

0
G(t, s)g(s)f(x(s))dsdt +

1
T

∫T

0
γ(t)dt

≥ λ

T

∫∫T

0
G(t, s)g(s)f(x(s))dt ds

≥ λ

T
βg∗L

∫T

0
x(s)ds

≥ λ

T
βg∗Lσ̃‖x‖

> ‖x‖.

(3.17)

3.1. Applications to Singular Equations

Despite the fact that in the previous results we deal with regular functions, it is possible to
apply some of them to the singular equation

x′′(t) + a(t)x(t) = λg(t)f(x(t)) + c(t), x(0) = x(T), x′(0) = x′(T), (3.18)

by means of a truncation technique.
To this end, we will consider a function f that satisfies

(H5) f : (0,∞) → (0,∞) is a continuous function such that f∞ = 0.

Theorem 3.8. Assume that γ∗ > 0 and conditions (H̃1), (H2), (H4), and (H5) hold.
Then, problem (3.18) has a positive solution for every λ > 0.

Proof. Let r = γ∗ > 0, and define the function

fr(u) =

⎧
⎨

⎩

f(r), if 0 ≤ u < r,

f(u), if u ≥ r.
(3.19)

From (H5), it follows that fr satisfies condition (H̃3), and (fr)∞ = 0. Moreover, γ∗ > 0
implies that

∫T
0 γ(s)ds > 0. As consequence, Theorem 3.5, Part 2, implies that the modified

problem

x′′(t) + a(t)x(t) = λg(t)fr(x(t)) + c(t), x(0) = x(T), x′(0) = x′(T) (3.20)

has a nonnegative solution xr for all λ > 0. Such function is given by the expression

xr(t) = λ

∫T

0
G(t, s)g(s)fr(xr(s))ds + γ(t). (3.21)
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The nonnegativeness of functions G, g and fr implies that the solution xr(t) ≥ γ∗ = r for all
t ∈ [0, T]. Therefore, xr is a positive solution of problem (3.18).

Remark 3.9. Theorem 3.8 is an alternative result to those obtained in [15, 16] by means of
Schauder’s fixed point theorem.

Example 3.10. Let us consider the repulsive singular differential equation

x′′ + a(t)x = λg(t)
(
x1/2 − ln(x)

)
+ c(t). (3.22)

Since f(x) = x1/2 − ln(x) satisfies (H5), we can apply Theorem 3.8 to obtain the following.

Corollary 3.11. Assume that (H̃1), (H2), and (H4) hold. If γ∗ > 0 then, (3.22) has a positive
T -periodic solution for every λ > 0.
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