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a b s t r a c t

Non-random mating has a significant impact on the evolution of organisms. Here, I developed
a modelling framework for discrete traits (with any number of phenotypes) to explore different
models connecting the non-random mating causes (mate competition and/or mate choice) and their
consequences (sexual selection and/or assortative mating).

I derived the formulae for the maximum likelihood estimates of each model and used information
criteria to perform multi-model inference. Simulation results showed a good performance of both
model selection and parameter estimation. The methodology was applied to ecotypes data of the
marine gastropod Littorina saxatilis from Galicia (Spain), to show that the mating pattern is better
described by models with two parameters that involve both mate choice and competition, generating
positive assortative mating plus female sexual selection. As far as I know, this is the first standardized
methodology for model selection and multi-model inference of mating parameters for discrete traits.
The advantages of this framework include the ability of setting up models from which the parameters
connect causes, as mate competition and mate choice, with their outcome in the form of data patterns
of sexual selection and assortative mating. For some models, the parameters may have a double
effect i.e. they produce sexual selection and assortative mating, while for others there are separated
parameters for one kind of pattern or another. From an empirical point of view, it is much easier to
study patterns than processes and, for this reason, the causal mechanisms of sexual selection are not
so well known as the patterns they produce. The goal of the present work is to propose a new tool
that helps to distinguish among different alternative processes behind the observed mating pattern.

The full methodology was implemented in a software called InfoMating (available at http://acraaj.
webs6.uvigo.es/InfoMating/Infomating.htm).

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The concept of sexual selection is a key piece of modern evolu-
tionary theory as it explains a great range of evolutionary patterns
and diversity. Darwin (1871) originally defined sexual selection as
competition between individuals of one sex to achieve matings
with the other sex. Yet Darwin distinguished two general biolog-
ical mechanisms of sexual selection: mate competition and mate
choice (see Ng et al., 2019 and references therein). However, the
concept of sexual selection has been controversial since its very
beginning (reviewed in Andersson, 1994; Parker, 2014; Parker
and Pizzari, 2015; Prum, 2012) and there is still disagreement on
its actual definition (Fitze and Galliard, 2011), and even, its role
as a key component of modern evolutionary biology has being
challenged (Parker and Pizzari, 2015; Roughgarden et al., 2006;
but see Shuker, 2010).

E-mail address: acraaj@uvigo.es.

In this work, I adhere to the definition used in population
genetics, where sexual selection is caused by processes of mate
competition that may produce intrasexual selection, and/or pro-
cesses of mate choice that may produce intersexual selection
Casares et al., 1998; Endler, 1986; Lewontin et al., 1968; Ng et al.,
2019; Rolán-Alvarez and Caballero, 2000.

The process of mate competition refers in the broad sense
to access to matings by courtship, intrasexual aggression and/or
competition for limited breeding resources (Andersson, 1994;
Kokko et al., 2012; Wacker and Amundsen, 2014). These pro-
cesses may generate a pattern of sexual selection (a change in
frequencies of the trait under study) in the sex that competes
(intrasexual selection Ng et al., 2019).

The process of mate choice occurs whenever the effects of
traits expressed in one sex leads to non-random allocation of
reproductive investment with members of the opposite sex (Ed-
ward, 2015). Choice may be mediated by phenotypic (sensorial or
behavioural) properties that affect the propensity of individuals
to mate with certain phenotypes (Jennions and Petrie, 1997). The
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observed pattern driven by mate choice can be a change in trait
frequency in the other sex (intersexual selection) and/or a pattern
of trait correlation between mates (assortative mating).

In sum, the evolutionary consequences of mate competition
and mate choice are sexual selection and assortative mating.
When the traits under study are discrete, the patterns of sexual
selection and assortative mating are defined in terms of change in
the phenotype frequencies, so that sexual selection corresponds
to the observed difference in gene or phenotype frequencies in
mated individuals with respect to population frequencies (Hartl
and Clark, 1997; Rolán-Alvarez and Caballero, 2000). Similarly,
assortative mating corresponds to the observed deviation from
random mating within matings (Rolán-Alvarez and Caballero,
2000 and references therein).

Still, the relationships among these concepts are complex and
can be approached from different perspectives (for extended de-
tails and alternative definitions the reader may consult Alonzo
and Servedio, 2019; Arnold and Wade, 1984; Edward, 2015; Es-
tévez et al., 2018; Futuyma and Kirkpatrick, 2017; Ng et al., 2019;
Rolán-Alvarez and Caballero, 2000; Rolan-Alvarez et al., 2015b;
Rosenthal, 2017).

In a previous work (Carvajal-Rodríguez, 2018b), the processes
of mate competition and mate choice were modelled for discrete
traits by means of the parameters mij, that represent the mutual
mating propensity between a female of type i and a male j.
Therefore, if A-type females prefer A-type males, this mate choice
is modelled as a higher mutual mating propensity between these
types as compared with the mutual mating propensity of the A
females with other male types (mAA > mAB). On the other hand,
if B-type males mate more often than other males whatever the
female, this mate competition is modelled by a higher marginal
mating propensity of B-type males (see below).

By modelling the mating process as a differential mutual mat-
ing propensity among different types of mating pairs, it is possible
to express the difference in mating phenotypes as the information
gained due to non-random mating (Carvajal-Rodríguez, 2018b).
This information gain is described in terms of the symmetric
Kullback–Leibler divergence (Kullback, 1997). Describing random
mating as the zero information model allows expressing the pat-
terns obtained from mate choice and competition in terms of the
information captured in the mutual mating propensity models.

Thus, the mating information-based framework provides a
formal approach for developing a set of hypotheses about the
causes (mate competition and mate choice) and their conse-
quences (sexual selection and assortative mating). In addition,
data-based evidence can be used for ranking each hypothesis and
perform multi-model-based inference (Aho et al., 2014; Burnham
et al., 2011; Link and Barker, 2006).

In the following sections I proceed as follows:
1- Given the population frequencies for some discrete trait

I define the saturated mating model in terms of the mutual
mating propensity parameters. Once the saturated model is de-
fined I obtain the three necessary and sufficient conditions for
random mating. Afterwards, by relaxing these conditions it is
possible to generate models for which differential marginal mat-
ing propensity may produce female or male sexual selection
without assortative mating, or on the contrary, models for which
some mutual mating propensities represent mate choice that
may produce assortative mating and frequency dependent sexual
selection. I obtain the maximum likelihood estimates for the
parameters of these models.

2- Relying on the previous section, it is possible to generate
several mutual mating propensity models and apply information
criteria for selecting the best candidate ones and estimating the
mating parameter values based on the most supported models. I
developed a software called InfoMating to do so.

3- Finally, I demonstrate the methodology by analysing simu-
lated and real data.

2. Mutual mating propensity models

Consider a female trait with k1 different phenotypes and a
male trait with k2 phenotypes, the total number of possible
mating phenotypes is K = k1 ×k2. Let a sample have n′ matings
from which n′

ij correspond to i-type females that mated with
j-type males so that

∑
i
∑

j n
′
ij = n′ with 1 ≤ i ≤ k1 and 1

≤ j ≤ k2. If the probability of the mating i × j is q′
ij, then the

logarithm of the multinomial likelihood function of the sample is

lnL = C +

k1∑
i=1

k2∑
j=1

n′

ij ln(q
′

ij)

where C is the logarithm of the multinomial coefficient which
is constant given the data. As it is well-known, the maximum
likelihood estimator of the multinomial probability of the mating
i × j is n′

ij/n′.

2.1. Saturated non-random mating model Msat

Let the population under study have n1ifemales of type i from
a total of n1females and n2j males of type j from a total of n2
males. Therefore, the population frequency of females of type i is
p1i = n1i/n1 and the population frequency of males of type j is
p2j = n2j/n2.

The mating probability between types i and j can be expressed
as q′

ij = mijqij (Carvajal-Rodríguez, 2018b) where qij is the
product of the female and male population frequencies of each
type (qij = p1i × p2j) and mij = m′

ij/M , where m′
ij is the mutual

mating propensity for pair combination (i, j), i.e. the expected
number of matings given an encounter between females of type i
and males of type j, and M is the mean mutual mating propensity
across all mating combinations M =

∑
i,j qijm

′
ij, so that Σq′

ij = 1.
Under this multinomial model, the log-likelihood of the sam-

ple is

lnLsat = C +

k1∑
i=1

k2∑
j=1

n′

ij ln(mijqij) (1)

This model is saturated (Msat) because it has as many parameters
as independent mating-class frequencies, Psat = K − 1. The
female and male population frequencies, p1 and p2, are either
known or they need to be estimated from the data. Therefore,
for model comparison, the population frequencies can be ignored
when counting the number of parameters involved in each model.

The maximum likelihood estimate (MLE) of mij is (n′
ij/n′)/qij =

PTIi,j where PTIi,j is the pair total index i.e. the observed frequency
of the mating class (i, j) divided by its expected frequency under
random mating (Rolán-Alvarez and Caballero, 2000).

In this work I am interested in the estimation of the mutual
mating propensity parameters (hereafter mutual-propensity pa-
rameters) for various competition and mate choice models. From
that point of view, it is convenient to express the maximum
likelihood estimator in a different way which I call λ-notation.

2.2. λ-notation

Consider the non-normalized parameters m′
ij and recall that

mij = m′
ij/M . The MLE of m′

ij under Msat is simply M × PTIi,j
i.e.M×(n′

ij/n′)/qij that can be conveniently rearranged as (n′
ij/qij)

/(n′/M). Because the mating parameters are normalized, it is
possible, without loss of generality, to set just one of the m′

ij to an
arbitrary value of 1. Thus, if we set m′

k1k2 = 1 and note (details in
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Appendix A) that in such case n′/M = n′
k1k2/qk1k2. Therefore, the

MLE of the parameters of the saturated model can be expressed
as

m̂′

ij =
λ

(
m′

ij

)
λ(1)

where

λ(θ ) =

∑A
ij∈A n

′

ij∑A
ij∈A qij

(2)

i.e., the function λ of a mating parameter θ is the sum of the
counts of all the mating classes in the set A = {(i1, j1), . . .}
having mutual-propensity θ divided by the sum of their expected
frequencies under random mating.

Thus, λ(m′
ij) expresses the sum of the observed matings with

mutual-propensity m′
ij divided by the product of the population

frequencies from each partner type. Similarly, λ(1) is simply
λ(θ = 1) i.e. it corresponds to the sum of the observed matings
having unity mating parameter divided by the corresponding
products of population frequencies.

As already mentioned, the most parameterized model is the
saturated model that has K − 1 parameters so, when divided by
the mean mutual-propensity M , the estimates λ(m′

ij)/(Mλ(1)) are
the corresponding pair total indices (PTIij, i.e. the observed fre-
quency of the mating class (i, j) divided by its expected frequency
under random mating).

The model Msat is the most complex model that can be fitted
to the available data. The principle of parsimony suggests to
consider reduced special cases of this saturated model. Next, I
computed the ML estimates of different classes of reduced models
that require less parameters, beginning by the most reduced one
which is the random mating model.

2.3. Random mating model M0

The random model M0 corresponds to the simplest, most
reduced model, which is nested within all others (it is a particular
case of any other model) while it is not possible to derive any
simplified version from it. When random mating occurs, the
mating probability between types i and j is q′

ij = qij = p1i ×

p2j. Under this model, the information would be zero (Carvajal-
Rodríguez, 2018b). This zero-information model is a particular
case of the saturated model when the mutual-propensities are
equal for every mating phenotype. The number of independent
mating parameters is P0 = 0.

The log-likelihood of the sample of mating is

lnL0 = C +

k1∑
i=1

k2∑
j=1

n′

ij ln(qij) (3)

Now, let us define the marginal propensity mFem_i for a female of
type i as

mFem_i =

k2∑
j=1

p2j
m′

ij

M
=

k2∑
j=1

p2jmij (4)

Similarly for a male of type j

mMale_j =

k1∑
i=1

p1i
m′

ij

M
=

k1∑
i=1

p1imij

Then, the M0 model corresponds to Msat subjected to the follow-
ing restrictions (recall that k1 is the number of female types and
k2 the number of the male types):

(i) Equal female marginalsmFem_i = mFem_j∀i, j ∈ k1 (5)

(ii) Equal male marginals:mMale_i = mMale_j∀i, j ∈ k2

(iii) Multiplicativity:mij = mFem_i × mMale_j∀i ∈ k1 and j ∈ k2
It is useful to express M0 in terms of these three restrictions
because by relaxing some of them it is possible to define differ-
ent classes of models. For example, a model with equal female
marginal propensities and multiplicative mutual-propensities
(conditions i and iii hold) but different male marginal propen-
sities (relaxing ii), corresponds to a case with competition among
males that may provoke a (intra)sexual selection pattern (see
below).

Therefore, by relaxing some of the conditions in (5), it is
possible to control the kind of causes that produce the different
non-random mating patterns. In fact, there are three general
classes of models that can be combined. The two first classes
correspond to relaxing the first or second condition and involve
mate competition in females or males, provoking female or male
(intra)sexual selection, respectively. Provided that the third con-
dition is maintained, these models cannot produce an assorta-
tive mating pattern (see below). The third class corresponds to
relaxing the third condition and involves mate choice, which
may provoke just assortative mating, or both assortative mating
and sexual selection, the latter depending on the population
phenotype frequencies (Fig. 1).

2.4. Mate competition models

These class of models correspond to relaxing the first and/or
second conditions in M0 while maintaining the condition of mul-
tiplicativity (5)-iii. The maintenance of the third condition implies
that the mutual-propensity of a mating pair (i, j) is the product
of the marginal female (mFem) and male (mMale) propensities.
Under this condition there should be no deviation from random
mating when comparing the observed and expected frequencies
within matings and the assortative mating pattern should not be
observed (Carvajal-Rodríguez, 2018b). I distinguished models that
generate a sexual selection pattern in just one sex or in both.

2.4.1. Intra-female competition
Relaxing condition (5)-i implies that at least one female

marginal propensity, say female of type A, is different from the
rest of female types i.e. mFem_A ̸= mFem_B with A ̸= B. On the
other side, the marginal propensity of males should be the same
which means that there is no intra-male competition, all male
types mate at an equal rate.

Herein I use lowercase a or b for noting competition pa-
rameters and c for choice parameters. Therefore, a model with
intra-female competition is obtained by defining every mutual-
propensity involving a female of type i, by an absolute (unnor-
malized) mating parameter ai as follows

m′
11 = m′

12 = · · · = m′
1k2 = a1

m′
21 = m′

22 = · · · = m′
2k2 = a2

...

m′(k1 − 1)1 = m′
k12 = · · · = m′

k1k2 = ak1−1

m′
k11 = m′

k12 = · · · = m′
k1k2 = 1 (6)

with ai > 0 ∀i.

Note that the relationships among the parameters will not be
altered when dividing them by ak1 so that ak1 = 1. Under this
model, there can be as much as k1-1 free mating parameters.

When computing the female and male marginal propensities
(4) it is seen that

mFem_1 = a1/M;mFem_2 = a2/M...;mFem_k1 = 1/M
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Fig. 1. Mating models defined by mate competition or mate choice, and their effect after relaxing some of the conditions imposed to the random mating model M0 .

mMale_1 = mMale_2 = mMale_3 = · · · = mMale_k2 = M/M = 1

where M is the mean mutual-propensity as defined above.
Model (6) has equal male marginal propensity and it is multi-

plicative. The MLE of the parameters is

âi =
λ(ai)
λ(1)

(7)

where λ(θ ) is defined as in (2). Thus, λ(ai) expresses the sum
of the observed matings having mutual-propensity ai, divided
by the sum of the product of the population frequencies from
each partner type. Similarly, λ(1) corresponds to the sum of the
observed matings having unity mating parameter divided by the
sum of the corresponding products of population frequencies
(details in Appendix A).

2.4.2. Intra-male competition
Relaxing condition (5)-ii implies that at least one male

marginal propensity, say male of type A, is different from the
rest of male types i.e. mMale_A ̸= mMale_B with A ̸= B. On the
other side, the marginal propensity of females should be the
same which means that there is no intra-female competition, all
female types mate at an equal rate. The corresponding model
can be obtained just by interchanging rows with columns in (6).
Noting the parameters as bj instead of ai, the maximum likelihood
estimate is

b̂j =
λ(bj)
λ(1)

(8)

2.4.3. Intra-female and male competition
By relaxing conditions (5)-(i) and (ii) the marginal propensities

will be different within females and males. The corresponding
model combines models (6) and (8) and has as much as (k1-
1)×(k2-1) parameters in the most parameterized case, and a
minimum of two (female and male) for the less parameterized
model, in order to maintain the multiplicativity condition (5)-(iii).
This type of model may produce a pattern of sexual selection
in both sexes without assortative mating. By notational conve-
nience, I fix the category k1 in females and k2 in males as having
unitary parameters. Therefore

m′
ij = aibj, i < k1, j < k2;m′

ik2 = ai, i < k1;
m′

k1j = bj; j < k2,m′
k1k2 = 1; with ai > 0, bj > 0 ∀i, j.

This model is multiplicative (see Appendix A) and the parameters
MLE are

âi =

(
p1k1
p1i

) ∑k2
j=1 n

′

ij∑k2
j=1 n

′

k1j

=
λ(ai +

∑
j aibj)

λfem(1)
(9)

b̂j = (
p2k2
p2j

)

∑k1
i=1 n

′

ij∑k1
i=1 n

′

ik2

=
λ(bj +

∑
i aibj)

λmale(1)
where the lambda function λ(ai+aib1+· · · aibj+· · ·) is applied to
the mutual-propensities that depend on the parameter ai. Thus,
λ(ai +

∑
j aibj) is the quotient between the sum of the number

of observed mating phenotypes that depend on the parameter ai
(i.e.

∑
1≤j≤k2 n

′
ij) and the sum of their expected random mating

frequencies (which is simply p1i). Correspondingly, λsex(1) is the
quotient between the sum of cases that contribute with 1 to the
mutual-propensity by the given sex (i.e.

∑
j n

′
k1j for females) and

the sum of the expected frequencies (which is p1k1 for females).
Formulae (9) are similar to (7) and (8). Note that model in (9)
becomes (7) by fixing every bj as 1 while it becomes (8) by fixing
every ai as 1.

2.5. Mate choice models

Mate choice models correspond to the class of non-
multiplicative models, i.e. they can be obtained by relaxing the
condition (5)-iii and may produce assortative mating patterns
(positive or negative). If the female marginal propensities are
equal and the same is true for the males (conditions (5)-i and ii
hold) there would not be sexual selection neither in females nor
males, and the model may produce only assortative mating pat-
terns. However, this cannot be guaranteed in general because the
occurrence of the sexual selection pattern is frequency dependent
under non-multiplicative models (see below).

Consider a model where the unnormalized mutual-
propensities are

m′
ii = ci > 0∀i ∈ min{k1, k2} and m′

ij = 1 for i ̸= j.

Thus, the homotype (i× i) mutual-propensities are parameterized
while the heterotype are not. This model is non-multiplicative
in general, because the contribution of the type i to the mutual-
propensity is distinct in mii that in mij or in mji (although with an
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even number of types a multiplicative model can be obtained by
setting m′

ii = 1/m′
jj).

By recalling the definition of marginal propensities in (4), the
condition for equal female marginal mFem_i = mFem_j is

p2i(ci − 1) = p2j(cj − 1) (10)

and in males

p1i(ci − 1) = p1j(cj − 1)

In general, depending on the conditions in (10), the mate choice
models have double effect i.e. they produce assortative pattern
jointly with sexual selection in at least one sex.

The maximum likelihood estimate for the model parameters
is

ĉi =
λ (ci)
λ(1)

(11)

Note that the homotype mating parameter may imply higher
mutual-propensity than the heterotype (ci > 1, positive assor-
tative mating) or vice versa, the homotype has lower mutual-
propensity (ci < 1, negative assortative). The number of different
parameters ranges from 1 (c1 = c2 = · · · = ci) to H; where H
= min{k1, k2} corresponds to the maximum possible number of
different homotype matings.

It is also possible to define mate choice models with the
heterotype mutual-propensities parameterized instead of the ho-
motype ones (see Appendix A for details).

2.6. Models with mate competition and mate choice parameters

I have shown that mate choice models may generate both
kinds of patterns, assortative mating and sexual selection, de-
pending on the within sex population frequencies. While it is not
possible to assure that the mate choice model produces no sexual
selection, it is possible to combine the previous models to ensure
that there are parameters directly linked to mate competition and
parameters directly linked to mate choice. These combined mod-
els have the property that when the mate choice parameter is set
to 1, there is only a known sexual selection effect caused by the
competition parameter (female, male, or both). When the mate
choice parameter is added, the assortative mating pattern appears
and also, an extra effect of frequency-dependent sexual selection
may be added to that of the original competition parameter.

2.6.1. Models with male competition and mate choice: independent
parameters

Consider the model m′
i1 = α; m′

ii = c for i ̸= 1 and m′
ij = 1

otherwise; with i ≤ k1, j ≤ k2. An example of this kind of model
can be seen in Fig. 2.

For the particular case of α ̸= 1, c = 1; the model has within
male competition that corresponds to the marginal propensity α
of the A-type male compared with the other males, so, a male
sexual selection pattern may be generated. On the contrary, the
female marginal propensities are equal so there is no female
competition. Considering mate choice and the assortative mating
pattern, when c = 1 the model is multiplicative so assortative
mating should not occur. In fact, in this case the pair sexual
isolation statistics (PSI) are equal (see Appendix A for details)
and the assortative mating is 0, i.e., the overall index of sexual
isolation IPSI = 0 (by recalling the definition IPSI = (4ΣPSIii −

Σ PSIij)/(4ΣPSIii + Σ PSIij) which is 0 if the PSI are equal )
(Carvajal-Rodríguez, 2018b).

However, by taking c ̸= 1 a new component is added to the
sexual selection pattern. The parameter c corresponds to mate
choice and produces positive (c > 1) or negative (c < 1) as-
sortative mating. The value of IPSI is a function of the parameter

Fig. 2. An example of male competition and mate choice independent parame-
ters model with 5 × 5 mating phenotypes. α is the male competition parameter
and c is the choice parameter. Rows are females, columns are males.

Fig. 3. An example of male competition and mate choice compound parameters
model with 5 × 5 mating phenotypes. α is the male competition parameter and
c is the choice parameter. Rows are females, columns are males.

c and the population frequencies. Female sexual selection may
also emerge depending on the value of c and the population
frequencies.

The MLEs of both parameters are

α̂ =
λ (α)

λ(1)

ĉ =
λ (c)
λ(1)

A variant of the above model can be generated by changing the c
parameter from the main diagonal to the anti-diagonal. Similarly
female sexual competition linked to the α-parameter is obtained
by transposing the matrix of the model.

2.6.2. Models with male competition and mate choice: compound
parameters

Consider the model m′
11 = cα; m′

i1 = α and m′
ii = c for

i > 1; and m′
ij = 1 otherwise; with i ≤ k1, j ≤ k2. An example of

this model can be seen in Fig. 3.
When c = 1 the model is the same as the previous one.

When c ̸= 1, the mate choice parameter provokes an extra effect
of sexual selection in males and females, plus assortative mating.
The MLE of α and c are

α̂ =

∑k1
i=1 n

′

i1/(cq11 +
∑

i>1 qi1)
λ(1)

=
λc.11−(α)

λ(1)

where λc.11−(α) indicates that for matings with parameter α, the
expected frequency indexed as 11 (i.e. q11) is weighted by c.
Similarly,

ĉ =

∑k
i=1 n

′

ii/(αq11 +
∑

i>1 qii)
λ(1)

=
λα.11−(c)

λ(1)
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Fig. 4. Male sexual selection and mate choice compound model with 5 × 5
mating phenotypes. α is the male sexual selection parameter and ck ’s are the
choice parameters with c2 = c1 . Rows are females, columns are males.

where k = min{k1, k2} and λα.11−(c) indicates that for matings
with mating parameter c , the expected frequency indexed as 11
is weighted by α.

The above estimates are dependent one on each other, so, for
obtaining the estimates of this compound parameter model I have
used a numerical bounded Nelder–Mead simplex algorithm, with
restriction α > 0, c > 0 (Gao and Han, 2012; Press, 2002; Singer
and Singer, 2004).

2.6.3. General model with male competition and mate choice param-
eters

The general model with male competition and mate choice
parameters is m′

11 = c1α; m′
i1 = α and m′

ii = ck for i > 1;
and m′

ij = 1 otherwise; with i ≤ k1, j ≤ k2. A particular case of
this model can be seen in Fig. 4.

Note that to distinguish the competition and mate choice
parameters, it is necessary that at least one ck parameter is equal
to c1 (as in Figs. 3 and 4) or that c1 = 1 as in Fig. 2, otherwise the
parameter for m11 does not distinguish competition and choice.
Therefore, the model in Fig. 4 has H parameters with H = min{k1,
k2} from which, H − 1 are choice parameters (c) plus one male
competition parameter α. The MLE are

α̂ =

∑k1
i=1 n

′

i1/(c1q11 +
∑

i>1 qi1)
λ(1)

=
λc1.11−(α)

λ(1)

ĉ1 =
n′

11/(αq11)
λ(1)

=
λα.11−(c1)

λ(1)

ĉk>1 =
n′

kk/(qkk)
λ(1)

=
λ(ck)
λ(1)

The model parameters ck>1 can be estimated directly from the
sample; on the contrary, the α and c1 estimates are dependent on
each other, so, for obtaining these estimates, I used a numerical
bounded Nelder–Mead simplex algorithm with restriction α > 0,
c1 > 0 (Gao and Han, 2012; Press, 2002; Singer and Singer, 2004).

Previous models were simplified versions of the general model.
For example, the model in Fig. 2 is the general model with
restrictions c1 = 1; c2 = c3 = · · · = ck = c . Also, the model
in Fig. 3 corresponds to c1 = c2 = c3 = · · · = ck = c. Another
particular case that could be defined is c1 = c; c2 = c3 =

· · · = ck = 1. In the latter, the MLE of the parameters can again
be expressed as a quotient of lambdas similar to the compound
parameter case

∝̂ =
λc1.11−(α)

λ(1)

ĉ =
λα.11−(c)

λ(1)
It is also possible to define another general model with the mate
choice parameters in the anti-diagonal. Using the λ notation,

the estimates follow the same formulae as defined for the gen-
eral model with the choice parameters in the main diagonal.
Concerning models with female competition and mate choice,
they are obtained just by transposing the matrices of the mating
parameters.

2.7. General double effect models

The mating parameters mij = θij with the restriction that at
least some are equal to one, permit to generate any particular
model. In general, these models produce patterns of sexual selec-
tion and assortative mating with each parameter possibly linked
to the occurrence of both (see Appendix A). The MLE is

θ̂ij =
λ

(
θij

)
λ(1)

(12)

The most parameterized model of this kind is the saturated,
with K − 1 parameters. In such case, as already mentioned, the
estimates in (12) are the corresponding pair total indices (PTI).

All the above derived MLE formulae have been verified by nu-
merical approximation using the bounded Nelder–Mead simplex
algorithm (Gao and Han, 2012; Press, 2002; Singer and Singer,
2004). The set of described models jointly with their expected
effects are summarized in Table 1.

3. Model selection and multi-model inference

Relying on the previous section, it would be possible to gen-
erate mate competition and mate choice models and, given a
mating table, to apply some information criteria to select the
best-fit candidates and estimating the mating parameter val-
ues based on the most supported models. Next, I briefly review
the information criteria and model selection concepts and show
how to apply them to perform model selection and multi-model
inference among mate competition and mate choice models.

Information-based model selection and multi-model inference
can be applied to describe uncertainty in a set of models to
perform inference on the parameters of interest (Barker and Link,
2015; Burnham et al., 2011; Claeskens, 2016; Grueber et al.,
2011). There are several information criteria at hand, although
trusting on a single form of information criterion is unlikely to be
universally successful (Aho et al., 2014; Brewer et al., 2016; Dziak
et al., 2019; Liu and Yang, 2011; Vrieze, 2012). In the present
work, two Kullback–Leibler divergence-based measures plus the
so-called Bayesian information criterion are considered.

3.1. Information criteria

The Akaike information criterion (AIC) provides the link be-
tween the asymmetric Kullback–Leibler divergence, that mea-
sures the matching between two distributions (Kullback, 1997),
and the maximized log-likelihood of a given model (Akaike,
1973). Here I use the sample-corrected version AICc, because it is
asymptotically equivalent and may work better for small sample
size

AICc = −2ln(L) + 2Pm + (2Pm(Pm))/(n′
− Pm − 1)

where L is the maximum likelihood of the model, Pm the total
number of estimated mating parameters and n′ is the number of
matings in the sample.

Similarly, the KICc information criterion (Cavanaugh, 2004;
Keerativibool, 2014) relies on the symmetric Kullback–Leibler
divergence (Kullback, 1997). It seems adequate to consider the
KICc criterion because the mating pattern obtained from the
mutual-propensity models can be described by the informational
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Table 1
Mutual mating propensity models as defined by different parameters in a case with two different phenotypic classes in each sex
(k1 = k2 = 2). The unnormalized m′

ij values not explicitly given are assumed to be 1.

Name (abbreviation) Model MLE Effect

Random (M0) m′
ij = 1∀i, j Random mating

Competition multiplicative models

Female competition (SFem-1P) m′
11 = m′

12 = a â = λ(a)/λ(1) Fem sexual selection
Male competition (SMale-1P) m′

11 = m′
21 = b b̂ = λ(b)/λ(1) Male sexual selection

Female and male competition (S2-2P) m′
11 = ab 2-sex sexual selection

m′
12 = a â = λfem(a)/λfem(1)

m′
21 = b b̂ = λmale(b)/λmale(1)

Mate choice models

One-parameter (C-1P) m′
11 = m′

22 = c ĉ = λ(c)/λ(1) Assortative mating
+ sex sel (freqdep)

General mate choice (C-HP) m′
11 = c1 , m′

22 = c2 ĉi = λ(ci)/λ(1) Assortative mating
+ sex sel (freqdep)

Competition and mate choice

2 independent parameters (SFemC-2P) m′
1j = α∀j;

m′
jj = c; j > 1

α̂ = λ(α)/λ(1)
ĉ = λ(c)/λ(1)

α-sexual selection in one
sex + mate choice effect

c-assortative mating
2 parameters (1 compound: SFemC-2Pc) m′

11 = cα; j > 1:
m′

1j = α; m′
jj = c;

α̂ = λc.11−(α)/λ(1)
ĉ = λα.11−(c)/λ(1)

α-sexual selection in one
sex + mate choice effect

c-assortative mating
H parameters (1 compound: SFemC-HPc) m′

11 = c1α; j > 1:
m′

1j = α; m′
jj = ck;

α̂ = λc1.11−(α)/λ(1)
ĉ1 = λα.11−(c1)/λ(1)

ĉk̸=1 = λ(ck)/λ(1)

α-sexual selection in one
sex + mate choice effect
ck-assortative mating

General double models (D-xP) Assortative mating
+ sex sel (freq dep)

Saturated (Msat) m′
ij = cij; m′

k1k2 = 1 ĉi = λ(ci)/λ(1)

k1: number of female categories; k2: number of male categories; H = min{k1 , k2}; sexsel (freqdep): frequency dependent sexual
selection.

flow from the mating frequencies, in the form of the symmetric
Kullback–Leibler divergence (Carvajal-Rodríguez, 2018b) so,

KICc = −2ln(L) + n′ln(n′/(n′
− Pm)) + P2

with P2 = n′
[(n′

− Pm)(2Pm + 3) − 2]/[(n′
− Pm − 2)(n′

− Pm)]
Finally, the Bayesian information criterion (BIC Schwarz, 1978)
permits an approximation to the Bayes factor applied for model
comparison (Wagenmakers, 2007)

BIC = −2ln(L) + Pmln(n′)

3.2. Overdispersion

In the context of model selection, data overdispersion, i.e.
greater observed variance than expected, could generate the se-
lection of overly complex models. The simplest approach to esti-
mate overdispersion is by computing a single variance inflation
factor (v). This inflation factor is the observed variation in the
data divided by that expected under the model with the highest
likelihood (Mc), other than the saturated, among the proposed
ones (Richards, 2008; Symonds and Moussalli, 2011). It can be
asymptotically approximated by the deviance i.e. twice the dif-
ference between the log-likelihood of the saturated (Msat) and the
Mc model, divided by the difference in the number of parameters
(PMsat - PMc) between both models

v = 2[ln(LMsat) − ln(LMc)]/df

where df = PMsat − PMc.
We rely on the deviance v as an approximation of the inflation

factor. If 1 ≤ v ≤ 4 this indicates overdispersion, while if higher
than 4–6 this may indicate poor model structure and the con-
struction of the set of models should be reconsidered (Burnham
and Anderson, 2002). For v values around 1 to 4, quasi-likelihood
theory provides a way to analyse over dispersed data (Anderson
et al., 1994; Richards, 2008). The quasi-likelihood is the likelihood

divided by an estimate of v. The quasi-likelihood version of the
various information criteria, namely QAICc, QKICc (Kim et al.,
2014) and QBIC, is obtained simply by replacing the likelihood
with the quasi-likelihood in the corresponding formula. In such
cases, the number of parameters is increased by one and the
model variance is multiplied by v (see below). When the quasi-
likelihood version is used, it must be done for all models and
criteria.

3.3. Model weights

Let IC be any information criterion. For a particular criterion
and for any set of R models there is a minimum criterion value
e.g. AICcmin, BICmin, etc. Thus, the models can be ranked regarding
the difference with that minimum

∆i = ICi − ICmin, for i = 1, 2, . . ., R

where ICi refers to any specific information criterion for the
model i.

Models can also be ranked by their weights from higher to
lower. The weight wi refers to the strength of evidence for that
model (Burnham et al., 2011; Claeskens, 2016)

wi = li/Σ lj for j = 1, 2, . . ., R

where li = exp(−0.5∆i) is the relative likelihood of each model
given the data.

3.4. Multi-model inference

Multi-model-based inference estimates the parameters of in-
terest based on a group of models instead of on a best-fit single
model (Burnham and Anderson, 2002; Burnham et al., 2011;
Symonds and Moussalli, 2011). The multi-model inference is per-
formed as a model averaged prediction for the parameters that
are variables in the best model.
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In our modelling framework and before performing the av-
erage of the estimated parameter values, the different models
should be translated to the same scale of mutual-propensity. For
example, a model like m′

11 = 2, m′
12 = m′

21 = m′
22 = 1, is

not in the same scale that m′
11 = 2, m′

12 = m′
21 = m′

22 = 0.5.
Without loss of generality, the latter can be transformed into an
equivalent model m′

11 = 4, m′
12 = m′

21 = m′
22 = 1, which is

now in the same scale as the first model.
The averaged parameter estimates were computed as a

weighted mean where the weights are the strength of evidence
for each model as obtained under a given information criterion.
The parameters were averaged only over the models for which
they appear as a variable. Because the weights need to sum
up to 1, it was necessary renormalize them by dividing by the
accumulated weight in the confidence subset.

Therefore, for each parameter m included in the confidence
subset Rs, the average was computed as

m̂ =

∑Rs
i wim̂i∑Rs
i wi

This way of performing the model averaged prediction is called
natural averaging (Symonds and Moussalli, 2011).

Finally, the reliability of each parameter estimate was mea-
sured as the unconditional standard error

Se(m̂) =

Rs∑
i

wi

√
vV (m̂i) + (m̂i − m̂)2

where V (m̂i) = V (mi|model i) = V (q′) = q′(1−q′)/n′ is the model
standard error squared and v is the variance inflation factor.

The use of the sum of weights to estimate variable impor-
tance in regression models has been criticized because of mul-
ticollinearity among the predictor variables and the imprecision
of the weight measures (Cade, 2015; Galipaud et al., 2014, 2017).
However, the mutual-propensity parameters do not belong to a
regression model and their average is performed in the same scale
and with comparable units. Therefore, under the mutual mating
propensity setting, the multi-model inference would work well
as it was confirmed by Monte Carlo simulation (next section).

4. Simulations

4.1. Polygamous species (sampling with replacement)

To test how well the above methodology is able to distinguish
among the different classes of models and estimate the mating
parameters, I used the sampling with replacement algorithm in
the program MateSim (Carvajal-Rodríguez, 2018a) to generate
mating tables by Monte Carlo simulation (see Appendix B for
detailed explanation).

The simulated cases correspond to one-sex competition and
mate choice models. The resulting mating tables were conse-
quence of the mating system and the sampling process, and
consisted in two types of information (Fig. B.1 in Appendix B).
First, the population frequencies (premating individuals) which
were generated randomly for each simulation run. Second, the
sample of 500 mating pairs (n′

= 500) for a hypothetical trait
with two classes at each sex. Because the simulated species had
large population size (n = 10 000) the mating process was
represented as a sampling with replacement, and the population
frequencies were constant over the mating season. The minimum
phenotype frequency (MPF) allowed was 0.1.

Five different model cases were simulated, namely random
mating with mutual-propensities m′

11 = m′
22 = m′

12 = m′
21 = 1

(M0 in Table 2), female competition (α = 2) and mate choice
(c = 3) with independent parameters m′

11 = m′
12 = 2, m′

22 = 3,

m′
21 = 1 (SfC Table 2), and with compound parameters m′

11 = 6,
m′

12 = 2,m′
22 = 3,m′

21 = 1 (SfCc Table 2), and male competition
(α = 2) and mate choice (c = 3) with independent parameters
m′

11 = m′
21 = 2, m′

22 = 3, m′
12 = 1 (SmC Table 2), and with

compound parameters m′
11 = 6, m′

21 = 2, m′
22 = 3, m′

12 = 1
(SmCc Table 2). Each case was simulated 1000 times.

For each simulation run, and given the normalized mutual-
propensities mij, the number of occurrences for each mating class
i × j was obtained as

Q (i,j) = n′
× p1i × p2j × mij

where n′ is the sample size, p1i is the female population frequency
for the phenotype i, p2j is the male population frequency for the
phenotype j.

Once the mating tables were obtained I proceeded with the
multi-model inference analysis using InfoMating. Note that there
were 1000 different tables for each simulated case so, in the
simulation study, it is better to consider the mean multi-model
estimates instead of the full list of analysed models (which would
imply 1000 lists for each simulated case). Also, it is worth noting
that with real data, the exactly true model is not necessarily
included in the set of assayed models and so, it is important to
evaluate the accuracy of the multi-model parameter estimates
because, if the parameter estimates are correct, the model that
would arise from that estimates and the set of most supported
candidate models must be a good guess of the true one.

The sequence of analyses was as follows. For each mating
table, InfoMating generates a set of 17 models (see the simulation
models in the link from the data accessibility section), from the
simplest random model M0 to the saturated Msat, including mate
competition and choice models with one or two parameters (see
all the types in Table 1). Then, the program computes the in-
formation criteria for each model and performs the multi-model
inference as explained in the previous section. Thus, for each of
the 5 simulated cases, 1000 parameter estimates were obtained,
and their average and standard error computed (Table 2).

It can be appreciated that the random mating was perfectly
estimated by the three IC methods. The competition plus mate
choice parameter estimates were fairly good under the three
criteria. The estimates were slightly better under AICc and slightly
less accurate under BIC.

The whole simulation process was repeated using a small
sample size (n′

= 50 matings) and the results were qualitatively
similar. However, the parameter estimates tended to be low-
biased possibly because the power to detect deviations from
random mating was low (see Table C.1 in Appendix C).

4.2. Monogamous species (sampling without replacement)

For monogamous species, the mating process is without re-
placement (from the point of view of the available phenotypes)
and can be represented via mass-encounters (Carvajal-Rodríguez,
2018a; Gimelfarb, 1988). The pattern obtained under the mass-
encounter monogamous scenario (when the population size is
large) was qualitatively similar to the polygamous species. How-
ever, there was less power to detect deviation from random
mating and so the estimates were low-biased, especially in the
case of the compound parameter. Regarding sample size, it seems
that the estimation was not very much affected (see Tables C.2
and C.3 in Appendix C).

Not surprisingly, the case of monogamous species with small
population size (N = 200) was the worst scenario for multi-
model estimation under the assumption of constant population
phenotype frequencies (see Table C.4 in Appendix C). Under this
case and when most of the adults were involved in the mating
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Table 2
Average (± standard error) parameter estimates under sample size 500 for a polygamous species with large
population size (N = 10000).
Model m′

11 m′
12 m21 m22

M0 Expected 1 1 1 1

AICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000
KICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000
BIC 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000

SfC Expected 2 2 1 3

AICc 1.94 ± 0.0017 1.99 ± 0.0009 1.0 ± 0.0000 2.95 ± 0.0025
KICc 1.94 ± 0.0024 1.99 ± 0.0020 1.0 ± 0.0000 2.95 ± 0.0029
BIC 1.90 ± 0.0060 1.94 ± 0.006 1.0 ± 0.0000 2.90 ± 0.0074

SfCc Expected 6 2 1 3

AICc 5.93 ± 0.0044 2.0 ± 0.0001 1.0 ± 0.0000 2.97 ± 0.0027
KICc 5.92 ± 0.0051 2.0 ± 0.0001 1.0 ± 0.0000 2.97 ± 0.0028
BIC 5.87 ± 0.0086 2.0 ± 0.0017 1.0 ± 0.0000 2.96 ± 0.0044

SmC Expected 2 1 2 3

AICc 1.94 ± 0.0020 1.0 ± 0.0000 1.99 ± 0.0013 2.94 ± 0.0030
KICc 1.93 ± 0.0032 1.0 ± 0.0000 1.98 ± 0.0029 2.93 ± 0.0037
BIC 1.90 ± 0.0062 1.00 ± 0.0000 1.93 ± 0.0065 2.88 ± 0.0080

SmCc Expected 6 1 2 3

AICc 5.93 ± 0.0046 1.0 ± 0.0000 2.0 ± 0.0001 2.97 ± 0.0029
KICc 5.92 ± 0.0052 1.0 ± 0.0000 2.0 ± 0.0001 2.97 ± 0.0029
BIC 5.87 ± 0.0085 1.0 ± 0.0000 2.0 ± 0.0010 2.97 ± 0.0037

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: female
competition and mate choice with compound parameters. SmC: male competition and mate choice with independent
parameters. SmCc: male competition and mate choice with compound parameters.

process (mating sample size = 100), the change in the pop-
ulation phenotype frequencies during the breeding season sig-
nificantly affected the observed non-random mating patterns.
Only when the deviation from random mating is as large as
with the compound effect of choice and competition, the esti-
mated mutual-propensities provided some information (SfCc in
Table C.4).

5. Example of application

Littorina saxatilis is a marine gastropod mollusc adapted to
different shore habitats in Galician rocky shores. There are two
different ecotypes, an exposed-to-wave (smooth un-banded, SU),
and a non-exposed (rough banded, RB) ecotype. Several exper-
imental studies have shown that these ecotypes have evolved
local adaptation at small spatial scale. For example, stronger
waves on the lower shore may provoke that the SU ecotype
becomes sexually mature at smaller size than the upper-shore
(RB) ecotype. In addition, in some areas of the mid-shore habitat,
the two ecotypes occasionally mate, producing apparently fertile
intermediate morphological forms that are called hybrids (HY)
(Rolan-Alvarez et al., 2015a).

Sexual isolation (positive assortative mating) between RB and
SU morphs was observed in wild mating pairs in the mid-shore
zone, likewise within-morph size-assortative mating in all shore
levels (Cruz et al., 2001). It is assumed that the size is the key
trait causing the increase of sexual isolation in this model system,
being the males the choosy sex in this species (Rolan-Alvarez,
2007).

Here, I reanalyzed a L. saxatilis data set (Cruz et al., 2001) to
estimate the mutual-propensity parameters between the RB, SU
and HY morphs in the mid-shore habitat. In the original study, the
authors analysed a hybrid zone encompassing 30 km of coast in
Galicia (NW Spain) with two sampling locations (Centinela and
Senin) and seasons (autumn and summer). Mating pairs were
collected jointly with the 15 nearest non-mating individuals. The
classification of morphs was made by considering as pure morphs
those snails that had their shell ridged and banded (RB morph)
or smooth and unbanded (SU morph). The hybrids (HY) were

Table 3
The population frequencies by sex and the sample of matings from Cruz et al.
(2001) data.

Total RB HY SU

Female freqs 1254 0.22 0.11 0.67
Male freqs 1080 0.26 0.12 0.62

Matings Males

RB HY SU

Females RB 19 9 13
HY 6 4 10
SU 6 7 80

those snails that had a complete set of bands but lacked ridges,
or vice versa, or those that, having both ridges and bands, had at
least two incomplete bands (see details in Cruz et al., 2001). In
the present reanalysis, I considered the pooled data of the two
sampling locations and seasons (Table 3).

First, I computed the information partition (Carvajal-
Rodríguez, 2018b) and the Chi-square test was significant only
for the assortative mating component (JPSI p-value < 0.0000001).

Second, I proceeded with the model estimation and initially
assayed only the subset of models with male and/or female mate
competition plus the saturated (Msat) and random mating (M0)
models (see the empirical models in the link from the data acces-
sibility section). The estimate of overdispersion was high (7.20)
which points to poor model structure rather than an excess of
variation in the data. The three information criteria gave similar
output with the M0 as the best fit model. The multi-model esti-
mates of the mutual-propensities were just one in every case as
expected from random mating. Because in the simulation study,
the AICc criterion gave the best estimates I will rely on this
criterion from now on.

The next step was to study only models with choice param-
eter plus the saturated (Msat) and random mating (M0) models.
The overdispersion was 4.65 that still indicates somewhat poor
model structure. The best fit model was a choice model with
one parameter. The multi-model inference gave a clear pattern
of positive assortative mating, that was higher for the RB × RB
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Fig. 5. Model D-2P-Rep3: Double two parameter model with three repetitions of
the c2 parameter (c1 = 0.2, c2 = 2) producing female and male sexual selection
plus positive assortative mating.

mating (m′
RBRB = 3), intermediate for HY × HY (m′

HYHY = 2.3)
and slightly lower for SU × SU (m′

SUSU = 2).
Then, I considered jointly the previous competition and choice

models and added new ones having separated competition and
choice parameters. The overdispersion was 3.4 that is an ac-
ceptable value for multinomial models and can be corrected by
using quasi-likelihoods (see the overdispersion section above).
Now, the best fit was a compound parameter model with female
competition and choice. The estimates from this model were a RB
female competition of α = 1.7 and choice c = 2.4. The multi-
model estimates gave positive assortative mating, m′

RBRB = 3,
m′

HYHY = 3, m′
SUSU = 2 and sexual selection favouring RB

females.
Finally, I considered all the previous models plus models hav-

ing parameters with double effect (i.e. one parameter may gen-
erate both sexual selection and assortative mating patterns). This
implies a total of 35 models including M0 and Msat (these models
can be consulted from the empirical models link in the data
accessibility section). The overdispersion was 2.5. The best model
was the same for the three criteria and it was a double effect
model with 2 parameters, c1 = 0.2 and c2 = 2, distributed as
indicated in Fig. 5. Approximately, the same model was obtained
using the multi-model estimates.

It is also possible to focus only on the models with separated
parameters for competition and choice. The best fit model from
this subgroup involves female competition. Recall that in Littorina
saxatilis the choosy sex are the males, so I considered that the
competitive advantage from the side of the females is explained
by the males preferring a given kind of females. The best fit model
is SFemC-2Pc (see Table 1) with RB female competitive advantage
of 1.7 more times matings than the other females and a choice
parameter of 2.4. The qualitative pattern obtained from these
models is similar to that in Fig. 5; the RB females (first row) are
preferred and there is a choice for within ecotype mating. The
combination of competition and choice explains that the mating
RB×RB is preferred by RB males (first column in Fig. 5), the
matings RB×HY and HY×HY are preferred by HY males (second
column in Fig. 5), and finally, it seems that the SU males (third
column in Fig. 5) do not discriminate between female ecotypes.

6. Discussion

6.1. Simulations

have simulated mating tables corresponding to random mat-
ing, mate competition and mate choice models. The random
mating pattern was accurately estimated in all runs . For the other
models, the competition and choice parameters were estimated
quite accurately when the mating system resembles a sampling
with replacement. Not surprisingly, BIC was slightly more con-
servative, while AICc presented slightly more accurate estimates
in most cases. The KICc criterion performed similar to the best
AICc and BIC cases. In general, the estimation was accurate and

even in the cases with extreme phenotypic frequencies, the mean
estimates were closer to the real value than to random mating.

The proposed multi-model approach is based on a previous
formalization showing that the mating distribution caused by
mate competition and/or choice can be expressed as a gain in
information with respect to random mating (Carvajal-Rodríguez,
2018b). In that work, the population phenotype frequencies had
been considered constant during the breeding season and only
required mating tables for detecting the effects of non-random
mating. Hence, to correctly identify the processes that produce
the patterns of sexual selection and assortative mating, it is
assumed that the encounters occur at random, i.e. the encounter
between two phenotypes depends on the population phenotypic
distribution, and that the mating pattern is the product of the
phenotypic distribution of the population and the individual pref-
erences (Carvajal-Rodríguez, 2018a). Therefore, the availability
of phenotypes should not be affected by the matings that have
already occurred, as expected for polygamous species, or even for
monogamous species, when the number of available individuals
is higher than the mating pairs within each type of females and
males.

The above assumption is likely to be violated in the case of
monogamous species with low population size, or even in large
population sizes with local competition for mates (if the number
of individuals in the patches is low) and/or spatial-temporal con-
straints. In such cases, the mating process resembles a sampling
without replacement and the population phenotype frequencies
may be altered during the reproductive season so that the sexual
selection and assortative mating patterns would be more difficult
to detect. The non-random mating information formalism was
generalized and the constant frequencies restriction alleviated
in a posterior work (Carvajal-Rodríguez, 2019). As before, the
non-random mating information can be partitioned into sexual
selection, assortative mating (sexual isolation) and their mixed ef-
fect. However, under this generalization the connection between
the mating behaviour, as captured by the mutual propensities,
and the data pattern in the mating table was not always main-
tained if the sampling had not been made at each mating round,
and therefore the present multimodel inference formalization
could be less accurate. Yet, it was shown that in the assortative
mating scenario, the constant indices still perform well under
variable population frequencies and so, the multimodel estima-
tion based on that indices, should still work (Carvajal-Rodríguez,
2019). Actually, the simulations (see Appendix C) showed that
the performance of the multi-model inference is affected by the
sampling and the mating system (polygamous or monogamous)
but it is still quite robust for detecting non-random mating in the
parameter values except in the worst scenario of monogamous
species with small population sizes.

6.2. General

The advantages of model selection and multi-model inference
in evolutionary ecology has been widely discussed, jointly with
the pros and cons of applying any information criteria (Aho et al.,
2014, 2017; Barker and Link, 2015; Burnham et al., 2011; Dziak
et al., 2019; Link and Barker, 2006) or the reliability of the
obtained estimates (Cade, 2015; Galipaud et al., 2014, 2017; Giam
and Olden, 2016).

Multi-model inference has been however, rarely utilized to
study the mating patterns that may emerge from mate choice
and mate competition. Here, by developing general models that
incorporate competition and mate choice, and providing their
maximum likelihood estimates, I am proposing a standardized
methodology for model selection and multi-model inference of
the mating parameters producing the sexual selection and assor-
tative mating patterns.
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The set of a priori models permits to perform an a posteriori
quantification of the data-based evidence and provide confidence
sets on plausible non-trivial models while allowing for multi-
model inference of the parameter values. The approach was im-
plemented by allowing three different information criteria. Under
the scenarios assayed, they performed similarly for simulated and
real data.

Regarding the methodology, it is worth noting that although
the mating tables require at least two phenotypes by sex (2×2
dimensions or higher) for fitting mate competition and mate
choice models, the proposed approach can still be applied if some
sex, say females, have only one phenotypic class. In this case,
we just need to duplicate the row (see Fig. D.1 in Appendix D).
Obviously, there cannot be any assortative pattern and sexual
selection can only be measured in the sex with more than one
phenotypic class.

The statistical tools developed in this work have been also
applied to empirical data. Previous studies in the Galician L.
saxatilis hybrid zone showed that mate choice favours within-
morph pairs (reviewed in Rolan-Alvarez, 2007). The estimates
obtained by multi-model inference support the positive assorta-
tive mating for the ecotype. In addition, another result emerged
from the analysis: The RB females are preferred in general i.e. RB
male with SU female has less mutual-propensity than SU male
with RB female (mSURB < mRBSU). This pattern may be favoured
by the physical difficulty for the mating involving bigger RB
males with the smaller SU females, and could be related with
the somehow more frequent occurrence of mating pairs hav-
ing females bigger than males (a typical trend in gastropods, E.
Rolán-Alvarez personal communication). Besides the mating pat-
tern depicted by the multi-model approach, the estimates of the
mutual-propensities were also obtained. Testing the reliability
of these estimates is, however, out of the scope of the present
manuscript, and it was left for future work.

To conclude, I present a methodology to distinguish among
several models of mate competition and choice behind the ob-
served pattern of mating and the phenotypic frequencies in the
population. From an empirical point of view it is much easier to
study patterns than processes and this is why the causal mech-
anisms of natural and sexual selection are not so well known as
the patterns they provoke. I propose a new tool that will help
to distinguish among different alternative processes behind the
observed mating pattern.

Software, code and data accessibility

The developed methodology has been fully implemented in a
program called InfoMating available at http://acraaj.webs6.uvigo.
es/InfoMating/Infomating.htm or upon request to the author. The
simulations and empirical model sets are available at doi:10.
5281/zenodo.3492107

The simulations data set is available at doi:10.5281/zenodo.
3497325
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Appendix A. Mutual mating propensity models

Saturated non-random mating model: λ notation.
Consider the total number of possible mating phenotypes K =

k1 × k2 and the saturated multinomial model for the K − 1 free
mating parameters m′

ij.
The log-likelihood function is

lnLsat = C +

k1∑
1≤i<k1

k2∑
1≤j<k2

n′

ij ln(m
′

ijqij) + n′

k1k2 ln

⎛⎝a(1 −

K−1∑
ij

qij)

⎞⎠
− n′ ln(M)

where n′ is the number of matings in the sample and n′
ij is the

number of matings between i- type females and j-type males. I
have fixed the parameter m′

k1k2 to a.
Compute the first derivative of the likelihood with respect to

a
dlnLsat
da

=
n′

k1k2

a
−

n
M

qk1k2

then by taking a = 1 and equating to 0 we get

n/M = n′
k1k2/qk1k2 ≡ λ(1)

that corresponds to the number of observed matings having unity
mating parameter divided by the corresponding product of pop-
ulation frequencies. Under the saturated model there is only one
(for convenience m′

k1k2) mating parameter having unitary value
and so the number of observed matings is n′

k1k2 and the product
of the corresponding population frequencies is p1k1×p2k2 = qk1k2.

Now, let find the m′
ij parameter value that maximizes the

likelihood

dlnLsat
dm′

ij
=

n′

ij

m′

ij
−

n
M

qij = 0

m̂′

ij =
n′

ij/qij
n/M

≡
λ(m′

ij)

λ(1)

The λ notation can be generalized for any set A of mating pairs
having the same value of propensity θ as follows

λ(θ ) =

∑A
ij∈A n

′

ij∑A
ij∈A qij

where n′
ij represents the number of mating pairs having absolute

(non-normalized) mating parameter θ and qij is the product of the
population frequencies p1i and p2j i.e. the expected frequency of
the θ-mating phenotypes under random mating.

Intrafemale competition models
The model is

m′
ij = ai with ai > 0 ∀ i < k1 and m′

k1j = a = 1 ∀ j.

There are k1 − 1 independent parameters. Note that the param-
eters m′

k1j have been fixed to a = 1. The log-likelihood function
is

lnL = C +

k1−1∑
i=1

k2∑
j=1

n′

ij ln
(
aiqij

)
+

k2∑
j=1

n′

k1j ln
(
aqk1j

)
− nln(M)

Now, assume that the parameter a is not fixed and compute the
first derivative of the likelihood with respect to a

dlnL
da

=

∑k2
j n′

k1j

a
−

n
M

k2∑
j

qk1j = 0
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then by taking a = 1 and equating to 0 we get

n/M =

∑
j

n′
k1j/

∑
j

qk1j ≡ λ(1)

Now find the ai parameter value that maximizes the likelihood

dlnL
dai

=

∑k2
j n′

ij

ai
−

n
M

k2∑
j

qij = 0

Solving for ai

âi =

∑k2
j n′

ij/
∑k2

j qij
n
M

≡
λ(ai)
λ(1)

The formula expressed as the quotient of lambdas is valid for
any number h of different parameters, 1 ≤ h < k1. In the
particular case of having only one parameter the sum of observed
matings having propensity a1, implies ΣΣn′

ij where the first
summation is for all the female types except females of type k1,
and the second is over all male types. The sum of the product of
frequencies is 1 − p1k1.

As before, λ(1) also corresponds to the sum of the observed
matings having expected propensity 1 divided by the sum of the
corresponding products of population frequencies. The model for
male sexual selection is solved in a similar way.

Intrasexual competition in both sexes
The model is

m′
ij = aibj, i < k1, j < k2;m′

ik2 = ai, i < k1;m′
k1j = bj, j < k2;

m′
k1k2 = 1

with ai > 0, bj > 0 ∀i, j.
It is easy to see that is multiplicative. Let A =

∑k1−1
i aip1i +

ap1k1 and B =
∑k2−1

j bjp2j + bp2k2.
The mean mutual mating propensity is

M =

∑
i,j

qijm′
ij =

k1∑
i=1

k2∑
j=1

aibjp1ip2j = AB

with ak1 = a and bk2 = b.
The marginal propensity for i-type females is

mFem_i = ai
males∑

j

p2j
bj

M
= ai

B
M

Similarly, the marginal for j-type males

mMale_j = bj
A
M

with ak1 = a and bk2 = b.
The condition (5)-(iii) for a multiplicative model implies that

mij = mFem_i × mMale_j. In addition, mij = aibj/M that jointly with
the multiplicative condition requires aibj/M = mFem_i ×mMale_j =

aiBbjA/M2 solving for M we get M = AB which we have already
seen it is true.

The log-likelihood function

lnL = C +

k1∑
i=1

k2∑
j=1

n′

ij ln
(
aibjqij

)
− nln(M)

with ak1 = a = 1 and bk2 = b = 1.
Consider the derivatives

dA
dai

= p1i;
dB
dbj

= p2j;
dM
dai

= p1iB;
dM
dbj

= p2jA

Now by taking the derivative of the log-likelihood with respect
to ai or bj and equating to 0 we get the estimates

âı =

∑k2
j n′

ij/
∑k2

j qij
n
M B

=
λ(ai +

∑
j aibj)

λfem(1)

b̂ȷ =

∑k1
i n′

ij/
∑ki

i qij
n
M A

=
λ(bj +

∑
i aibj)

λmale(1)

where

n
M

B =

∑k2
j n′

k1j

p1k1
≡ λfem(1)

n
M

A =

∑k1
i n′

ik2

p2k2
≡ λmale(1)

Mate choice models with parameterized heterotypes
Consider models in which the homotype mating has absolute

propensity of 1 while the different heterotypes have absolute
value of cij. The maximum likelihood estimate is

ĉh1h2 =
λ (ch1h2)

λ(1)
The number of parameters in this type of model is K−min{k1, k2}
−ΣS(Cs−1) where the sum is over the set of different heterotype
matings and Cs is the cardinality of each set.

Double effect models
The following models generate a double pattern of sexual

selection and assortative mating even when the population fre-
quencies are uniform.

Double effect models producing sexual selection in one sex under
uniform frequencies

A simple approach consists in building a new model by setting
m′

ii = 1 and m′
jj = 1 + c. Then, if we desire assortative mating

jointly with sexual selection only in females we additionally set
m′

ij = 1− c; on the contrary, if we desire selection only in males
we set m′

ji = 1 − c with −1 < c < 1. If the frequencies are
not uniform the model generates assortative mating jointly with
sexual selection in both sexes.

In the case of the model with m′
ij = 1 − c (female sexual

selection if frequencies are uniform) the maximum likelihood
estimate of c is one of the roots of the quadratic

(xjj − xij + n′D) − c[xij + xjj + D(xjj − xij)]

− c2D[n′
− (xij + xjj)] = 0

where D = qij - qjj and n′
=

∑
xij is the number of matings

(sample size).
If the frequencies are uniform and k1 = k2, i.e. p1i = p1j =

p2i = p2j ∀i, j then

ĉ =
xjj − xij
xjj + xij

The case for male sexual selection is obtained simply by inter-
changing xij by xji and qij by qji in the formulae.

The above model has only one parameter c; we can introduce
a more complex two parameter model, M(a,c) by setting m′

ii = a,
m′

jj = 1 + c and m′
ij = 1 − c , for female sexual selection (or

m′
ji = 1 − c for male sexual selection). For obtaining the MLE of

this two parameter double model, with restrictions a > 0, c < |1|,
I have used a numerical bounded Nelder–Mead simplex algorithm
(Gao and Han, 2012; Press, 2002; Singer and Singer, 2004).

Double effect models with sexual selection in both sexes under uni-
form frequencies

To get assortative mating jointly with sexual selection in both
sexes under uniform frequencies, we just need to combine the
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above uniform one parameter models of each sex, so thatm′
ii = 1,

m′
jj = 1 + c and m′

ij = m′
ji = 1 − c.

The maximum likelihood estimate of c involves the solution
of the quadratic

[xjj − xs + n′D2] − c[xjj + xs + D2(xjj − xs)]

+ c2D2[xjj + xs − n′
] = 0

where xs = xij + xji and D2 = qij + qji –qjj.

General double effect models
We can also define a set of general models where any propen-

sity m′
ij has parameter θij with at least one propensity having

value of 1. The MLE of the parameters of this kind of model is

θ̂ij =
λ

(
θij

)
λ(1)

where λ(θij) is defined as in (A2).
The simplest model defined in this way is

m′
ii = c and m′

ij = m′
ji = m′

jj = 1,

which produces assortative mating and sexual selection in both
sexes.

Consider as an example of this model, the case with k1 =

k2 = 2 so that 0 < p11 < 1; 0 < p21 < 1; m′
11 = c

and m′
12 = m′

21 = m′
22 = 1. The mean mating propensity is

M = q11(c − 1) + 1. The absolute marginal propensity for the
first female type m′

Fem_1 = cp21 +1−p21 = p21(c−1)+1, and for
the second female type m′

Fem_2 = 1. Similarly the male marginals
are m′

Male_1 = p11(c − 1) + 1 and m′
Male_2 = 1.

Recall that the condition for the sexual selection pattern within
a given sex is that the marginal mating propensities are different
which here is true for both sexes provided that c ̸= 1. Regarding
the assortative mating pattern it can be proved that the joint
isolation index (IPSI) is 0 only if c = 1. However, it is sufficient
to prove that the model is not multiplicative (Carvajal-Rodríguez,
2018b). Consider that the model is multiplicative, this implies,
m′

12/M = (m′
Fem_1/M)×(m′

Male_2/M) that given the model values
becomes

M = (m′
Fem_1) × (m′

Male_2)

which can be true only when p11 = 1 and so it is false by
definition.

The estimate of c under this model is λ(c)/λ(1).
The most parameterized model that can be defined in this way

has K−1 free parameters and coincides with the saturated model
so that the estimates are the corresponding pair total indices
(PTIij). Moreover, note that if no mutual propensity is fixed to 1
then λ(1) = (n−A)/(1−P) = n where A = number of observations
having value 1 = 0 and P = product of population frequencies of
the involved types having mutual propensity 1 = 0. Therefore the
estimate of θij can also expressed as λ(θij)/n which is the observed
frequency of mating pairs (i, j) divided by the expected frequency
by random mating which is the definition of the pair total index
PTIij (K − 1 are free and one PTI is dependent on the others).

All the above derived MLE formulae have been checked by
a numerical bounded Nelder–Mead simplex algorithm (Gao and
Han, 2012; Press, 2002; Singer and Singer, 2004).

Appendix B. Monte Carlo simulation of mating tables

The mating tables for the simulation experiments were gener-
ated by the program MateSim (Carvajal-Rodríguez, 2018a) avail-
able at http://acraaj.webs.uvigo.es/MateSim/matesim.htm.

Fig. B.1. Example of a table generated by the simulations. The format is the
same as for the JMating software.

Fig. D.1. Examples of two toy models with only one type of female and two
types of males. Note that the rows of the mating table are duplicated (same
female type). A: Random mating B: Male sexual selection.

The number of replicates for each case was 1000. For each
run the program first generated the number of premating males
and females from a given population size. For example, if the
population size consisted in n1 (= 5000) females and n2 (= 5000)
males, the program got n1A = n1 × U females of the A type and
n1B = n1 −n1A females of the B type, where U is a value sampled
from the standard uniform distribution. The premating males
were obtained similarly. Then, the female population frequencies
were p1i = n1i/n1, and p2i = n2i/n2 for the male ones. Finally, a
sample of n′(= 500) matings was obtained, where the number of
counts for each mating phenotype i × j was

Q (i,j) = n′
× p1i × p2j × m′

ij/M

where m′
ij are the mutual-propensity parameters as defined for

each kind of model, and M =
∑

p1i × p2j × m′
ij.

The format of the obtained tables was the same as the JMating
(Carvajal-Rodriguez and Rolan-Alvarez, 2006) input files (Fig. B.1).

Appendix C. Polygamous species with low sample size and
monogamous species

See Tables C.1–C.3.

Appendix D. Incomplete set-up: toy example

The proposed modelling framework requires at least two phe-
notypes by sex (mating tables of 2×2 dimensions or higher) for
measuring sexual competition and mate choice effects. However
it still can be applied if some sex, say females, have only one
phenotype. In this case we just need to duplicate the row (see
Fig. D.1). Obviously, only male sexual selection can be measured.

The examples in Fig. D.1 correspond to a population with
only one female but two male phenotypes (phenotype-1 and
phenotype-2). There were sampled 269 females plus 277 males
with phenotype-1 and 133 males with phenotype-2. In the first

http://acraaj.webs.uvigo.es/MateSim/matesim.htm
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Table C.1
Average (standard error) parameter estimates under sample size 50 for a polygamous species with large population
size (N = 10000).
Model m′

11 m′
12 m21 m22

M0 Expected 1 1 1 1

AICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000
KICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000
BIC 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000

SfC Expected 2 2 1 3

AICc 1.38 ± 0.0106 1.45 ± 0.0119 1.0 ± 0.0003 2.03 ± 0.0206
KICc 1.32 ± 0.0104 1.35 ± 0.0110 1.0 ± 0.0003 1.76 ± 0.0226
BIC 1.29 ± 0.0106 1.29 ± 0.0105 1.0 ± 0.0003 1.64 ± 0.0225

SfCc Expected 6 2 1 3

AICc 4.71 ± 0.0204 1.86 ± 0.0201 1.0 ± 0.0000 2.36 ± 0.0286
KICc 4.45 ± 0.0236 1.57 ± 0.0216 1.0 ± 0.0000 2.06 ± 0.0316
BIC 4.28 ± 0.0283 1.42 ± 0.0198 1.0 ± 0.0000 1.99 ± 0.0324

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: female
competition and mate choice with compound parameters.

Table C.2
Average (standard error) parameter estimates under sample size 500 for a monogamous species (mass-encounter
mating process) with large population size (N = 10000).
Model m′

11 m′
12 m21 m22

M0 Expected 1 1 1 1

AICc 1.07 ± 0.0053 1.07 ± 0.0053 1.07 ± 0.0059 1.07 ± 0.0056
KICc 1.05 ± 0.0044 1.04 ± 0.0043 1.05 ± 0.0052 1.04 ± 0.0050
BIC 1.01 ± 0.0028 1.01 ± 0.0020 1.01 ± 0.0033 1.01 ± 0.0026

SfC Expected 2 2 1 3

AICc 1.95 ± 0.0158 1.95 ± 0.0160 1.0 ± 0.0001 2.04 ± 0.0176
KICc 1.93 ± 0.0162 1.93 ± 0.0166 1.0 ± 0.0001 2.03 ± 0.0180
BIC 1.82 ± 0.0183 1.82 ± 0.0189 1.0 ± 0.0000 1.93 ± 0.0195

SfCc Expected 6 2 1 3

AICc 3.02 ± 0.0341 2.07 ± 0.0210 1.0 ± 0.0001 2.84 ± 0.0298
KICc 3.0 ± 0.0343 2.04 ± 0.0216 1.0 ± 0.0000 2.82 ± 0.0302
BIC 2.86 ± 0.0353 1.92 ± 0.0244 1.0 ± 0.0000 2.73 ± 0.0313

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: female
competition and mate choice with compound parameters.

Table C.3
Average (standard error) parameter estimates under sample size 50 for a monogamous species (mass-encounter
mating process) with large population size (N = 10000).
Model m′

11 m′
12 m21 m22

M0 Expected 1 1 1 1

AICc 1.0 ± 0.0362 1.04 ± 0.0414 1.0 ± 0.0365 1.02 ± 0.0406
KICc 1.02 ± 0.0339 1.03 ± 0.0374 1.0 ± 0.0324 1.02 ± 0.0377
BIC 1.03 ± 0.0312 1.03 ± 0.0340 1.0 ± 0.0283 1.03 ± 0.0361

SfC Expected 2 2 1 3

AICc 2.0 ± 0.0568 2.05 ± 0.0638 1.08 ± 0.0155 2.23 ± 0.0635
KICc 1.76 ± 0.0539 1.78 ± 0.0605 1.06 ± 0.0145 1.96 ± 0.0597
BIC 1.62 ± 0.0515 1.66 ± 0.0578 1.05 ± 0.0143 1.79 ± 0.0555

SfCc Expected 6 2 1 3

AICc 3.36 ± 0.1004 2.19 ± 0.0731 1.03 ± 0.0073 3.11 ± 0.0997
KICc 3.06 ± 0.0951 1.94 ± 0.0715 1.03 ± 0.0066 2.85 ± 0.0964
BIC 2.89 ± 0.0919 1.79 ± 0.0687 1.02 ± 0.0048 2.68 ± 0.0929

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: female
competition and mate choice with compound parameters.

example (Fig. D.1-A) there were 70 matings involving the male
phenotype-1 and 39 with male phenotype-2. In the second ex-
ample (Fig. D.1-B) the matings were 100 with phenotype-1 and 9
with phenotype-2.

The analysis of the first case indicated that there was no sig-
nificant deviation from random mating (JPTI = 0.005, P = 0.78).
The best model was the random mating model M0. As expected,

the multi-model estimation of the mutual mating parameters was
1 for every parameter. The results were the same for the three
information indices (AICc, KICc and BIC).

The analysis of the second case detected a deviation from
random mating (JPTI = 0.405, P < 10−7) due to male sexual
selection (JPS2 = 0.405, P < 10−7) see Carvajal-Rodríguez (2018b)
for details of the j indices. The best model was male sexual
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Table C.4
Average (standard error) parameter estimates under sample size 100 for a monogamous species (mass-encounter
mating process) with small population size (N = 200).
Model m′

11 m′
12 m21 m22

M0 Expected 1 1 1 1

AICc 1.07 ± 0.0083 1.10 ± 0.0141 1.09 ± 0.0141 1.07 ± 0.0090
KICc 1.04 ± 0.0064 1.05 ± 0.0094 1.05 ± 0.010 1.04 ± 0.0070
BIC 1.02 ± 0.0047 1.02 ± 0.0056 1.02 ± 0.0065 1.02 ± 0.0052

SfC Expected 2 2 1 3

AICc 1.15 ± 0.0173 1.11 ± 0.0157 1.07 ± 0.0118 1.11 ± 0.0145
KICc 1.10 ± 0.0141 1.06 ± 0.0125 1.04 ± 0.0091 1.06 ± 0.0108
BIC 1.03 ± 0.0072 1.03 ± 0.0079 1.02 ± 0.0059 1.03 ± 0.0060

SfCc Expected 6 2 1 3

AICc 1.85 ± 0.0555 1.30 ± 0.0317 1.07 ± 0.0124 2.12 ± 0.0757
KICc 1.66 ± 0.0515 1.22 ± 0.0289 1.04 ± 0.010 1.94 ± 0.070
BIC 1.49 ± 0.0476 1.13 ± 0.0248 1.02 ± 0.0039 1.71 ± 0.0637

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: female
competition and mate choice with compound parameters.

selection with one parameter (Smale-1P). The male sexual selec-
tion component indicated five times higher mating propensity of
male phenotype-1 with respect to phenotype-2.
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